植物学报 ›› 2015, Vol. 50 ›› Issue (5): 644-.doi: 10.11983/CBB14172

• • 上一篇    下一篇

与木葡聚糖合成的糖基转移酶基因研究进展

解敏敏, 晁江涛, 孔英珍*()   

  1. 中国农业科学院烟草研究所, 中国农业科学院烟草遗传改良与生物技术重点开放实验室, 青岛 266101
  • 收稿日期:2014-09-22 接受日期:2015-04-02 出版日期:2015-09-01 发布日期:2015-10-09
  • 通讯作者: 孔英珍 E-mail:kongyingzhen@163.com
  • 作者简介:

    ? 共同第一作者

  • 基金资助:
    国家科技支撑计划(No.2015BAD15B03-05)、国家自然科学基金(No.31470291)和中国农业科学院青年英才计划

Glycosyltransferase Genes Involved in Xyloglucan Biosynthesis

Minmin Xie, Jiangtao Chao, Yingzhen Kong*   

  1. Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Chinese Academy of Agricultural Sciences, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
  • Received:2014-09-22 Accepted:2015-04-02 Online:2015-09-01 Published:2015-10-09
  • Contact: Kong Yingzhen E-mail:kongyingzhen@163.com
  • About author:

    ? These authors contributed equally to this paper

摘要:

半纤维素多糖木葡聚糖(XyG)存在于大多数植物的初生细胞壁中, 对细胞壁的结构组织和生长发育具有重要的调控作用。XyG在植物进化中存在结构的多样性。该文概述了参与XyG合成的糖基转移酶的最新研究进展, XyG合成需要多种糖基转移酶参与, 这些酶类很可能以蛋白酶复合体的形式存在并发挥作用, XyG的结构和组成的改变对植物的生长发育也产生影响。

Abstract:

The hemicellulosic polysaccharide xyloglucan (XyG), found in the primary cell walls of most plants, plays important roles in structural organization of plant cell walls and regulation of growth and development. Recent research in structural characterization of XyGs from different plant species revealed the diversification of XyG during plant evolution. This paper reviews progress in studies of glycosyltransferase genes involved in XyG biosynthesis. Most of the XyG-specific glycosyltransferases have been identified, and some of them appear to form a complex for involvement in XyG biosynthesis. We discuss how changes in XyG structure affect plant growth and development.

图1

部分陆生植物的代表性木葡聚糖亚基结构及参与其合成的糖基转移酶催化位点 (A) XLFG亚基结构, XXT1、XXT2和XXT5催化木糖基团的转移; (B) YXXG亚基结构, XUT1催化半乳糖醛酸基团的转移; (C) XXJG亚基结构; (D) XSGG亚基结构。Fucp: 岩藻糖; Xylp: 木糖; Galp: 半乳糖; Glcp: 葡萄糖; GalpA: 半乳糖醛酸; OAC: 乙酰化基团"

图2

拟南芥MUR3同源基因蛋白序列进化树"

图3

mur3突变体突变位点示意图"

1 Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010). TRICHOME BIREFRINGENCE and its homolog AT5G0- 1360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis.Plant Physiol 153, 590-602.
2 Bootten TJ, Harris PJ, Melton LD, Newman RH (2004). Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall.J Exp Bot 55, 571-583.
3 Caffall KH, Mohnen D (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides.Carbohydr Res 344, 1879-1900.
4 Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.Plant Cell 20, 1519-1537.
5 Chou YH, Pogorelko G, Zabotina OA (2012). Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes.Plant Physiol 159, 1355-1366.
6 Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007). A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase.Proc Natl Acad Sci USA 104, 8550-8555.
7 Cosgrove DJ (2005). Growth of the plant cell wall.Nat Rev Mol Cell Biol 6, 850-861.
8 Cosgrove DJ, Jarvis MC (2012). Comparative structure and biomechanics of plant primary and secondary cell walls.Front Plant Sci 3, 204.
9 Davis J, Brandizzi F, Liepman AH, Keegstra K (2010). Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane.Plant J 64, 1028-1037.
10 Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989-1000.
11 Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005). Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.Planta 221, 729-738.
12 Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011). O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain.Plant Cell 23, 4041-4053.
13 Hantus S, Pauly M, Darvill AG, Albersheim P, York WS (1997). Structural characterization of novel L-galactose- containing oligosaccharide subunits of jojoba seed xyloglucans.Carbohydr Res 304, 11-20.
14 Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR 2nd, Darvill A, York WS (2005). Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae.Carbohydr Res 340, 1826-1840.
15 Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012). RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis.Mol Plant 5, 984-992.
16 Jia ZH, Cash M, Darvill AG, York WS (2005). NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.Carbohydr Res 340, 1818-1825.
17 Kong YZ, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li XM, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA (2015). Galactose- depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.Plant Physiol 167, 1296-1306.
18 Kong YZ, Zhou GK, Abdeen AA, Schafhauser J, Rich- ardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013). GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage.Plant Physiol 163, 1203-1217.
19 Kong YZ, Zhou GK, Avci U, Gu XG, Jones C, Yin YB, Xu Y, Hahn MG (2009). Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional ortho- logs to PARVUS/AtGATL1 in Arabidopsis.Mol Plant 2, 1040-1050.
20 Kong YZ, Zhou GK, Yin YB, Xu Y, Pattathil S, Hahn MG (2011). Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases.Plant Phy- siol 155, 1791-1805.
21 Li WB, Guan QM, Wang ZY, Wang YD, Zhu JH (2013). A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis.Mol Plant 6, 1344-1354.
22 Li XM, Cordero I, Caplan J, Mølhøj M, Reiter WD (2004). Molecular analysis of 10 coding regions from Arabidopsis that are homologous to the MUR3 xyloglucan galactosyltransferase.Plant Physiol 134, 940-950.
23 Liepman AH, Cavalier DM (2012). The CELLULOSE SYN- THASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives.Front Plant Sci 3, 109.
24 Madson M (2003). The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins.Plant Cell Online 15, 1662-1670.
25 Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011). Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea.Plant Physiol 155, 1068-1078.
26 Park YB, Cosgrove DJ (2012a). Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/ xxt2 mutant of Arabidopsis.Plant Physiol 158, 465-475.
27 Park YB, Cosgrove DJ (2012b). A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.Plant Phy- siol 158, 1933-1943.
28 Pauly M, Gille S, Liu LF, Mansoori N, de Souza A, Schultink A, Xiong GY (2013). Hemicellulose biosynthesis.Planta 238, 627-642.
29 Pauly M, Keegstra K (2010). Plant cell wall polymers as precursors for biofuels.Curr Opin Plant Biol 13, 305-312.
30 Peña MJ, Darvill AG, Eberhard S, York WS, O'Neill MA (2008). Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.Glycobiology 18, 891-904.
31 Peña MJ, Kong YZ, York WS, O'Neill MA (2012). A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth.Plant Cell 24, 4511-4524.
32 Peña MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004). The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth.Plant Physiol 134, 443-451.
33 Perrin RM, Jia ZH, Wagner TA, O'Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003). Analysis of xyloglucan fucosylation in Arabidopsis.Plant Physiol 132, 768-778.
34 Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi MS, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013). Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of poly- saccharide acetylation and increased resistance to pathogens.Plant Physiol 162, 9-23.
35 Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M (2013). The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents.Plant Physiol 163, 86-94.
36 Shirakawa M, Yamatoya K, Nishinari K (1998). Tailoring of xyloglucan properties using an enzyme.Food Hydrocoll 12, 25-28.
37 Søgaard C, Stenbæk A, Bernard S, Hadi M, Driouich A, Scheller HV, Sakuragi Y (2012). GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues.PLoS One 7, e31324.
38 Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002). Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments.Proc Natl Acad Sci USA 99, 9055-9060.
39 Tamura K, Shimada T, Kondo M, Nishimura M, Hara- Nishimura I (2005). KATAMARI1/MURUS3 is a novel golgi membrane protein that is required for endomembrane organization in Arabidopsis.Plant Cell 17, 1764-1776.
40 Tedman-Jones JD, Lei R, Jay F, Fabro G, Li XM, Reiter WD, Brearley C, Jones JDG (2008). Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves.Plant J 56, 691-703.
41 Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002). The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1.Proc Natl Acad Sci USA 99, 3340-3345.
42 von Schantz L, Gullfot F, Scheer S, Filonova L, Cicortas Gunnarsson L, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M (2009). Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules.BMC Biotechnol 9, 92.
43 Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ (2012). Ara- bidopsis GT34 family contains five xyloglucan α-1,6-xylos- yltransferases.New Phytol 195, 585-595.
44 Wang C, Li S, Ng S, Zhang BC, Zhou YH, Whelan J, Wu P, Shou HX (2014). Mutation in xyloglucan 6-xylosytrans- ferase results in abnormal root hair development in Oryza sativa.J Exp Bot 65, 4149-4157.
45 Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006). Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose.Am J Bot 93, 1402-1414.
46 Wolf S, Hématy K, Höfte H (2012). Growth control and cell wall signaling in plants.Annu Rev Plant Biol 63, 381-407.
47 York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996). The structures of arabinoxyloglucans produced by solanaceous plants.Carbohydr Res 285, 99-128.
48 Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012). Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis.Plant Physiol 159, 1367-1384.
49 Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008). Arabidopsis XXT5 gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis.Plant J 56, 101-115.
50 Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014). TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis.Plant Phy- siol 166, 181-189.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡适宜. 植物的受精作用 第四讲 受精的障碍——不亲和性[J]. 植物学报, 1984, 2(23): 93 -99 .
[2] 蒋高明. 退化生态系统的恢复与管理——兼论自然保护区在其中发挥的作用[J]. 植物学报, 2003, 20(03): 373 -382 .
[3] 罗立新 崔克明 杨海东 李正理 李举怀. 杜仲形成层恢复活动和过氧化物酶同工酶酶谱的变化[J]. 植物学报, 1994, 11(专辑): 65 .
[4] 刘向东 徐是雄 卢永根. 水稻受精前胚囊壁的形式与发育观察[J]. 植物学报, 1996, 13(专辑): 103 .
[5] 张孝英 杨世杰. 胞间连丝与大分子物质的胞间转移[J]. 植物学报, 1999, 16(02): 150 -156 .
[6] 陈璋. 拟南芥:植物分子生物学研究的模式物种[J]. 植物学报, 1994, 11(01): 6 -11 .
[7] 蔡雪. 花粉粒和花粉管中的微管骨架[J]. 植物学报, 1996, 13(专辑): 13 -16 .
[8] 雷晓勇 黄蕾 田梅生 胡小松 戴尧仁. 苹果果肉中抗氰氧化酶(AOX)的分离鉴定[J]. 植物学报, 2002, 19(06): 739 -742 .
[9] 姚春鹏 李娜. 植物激素脱落酸受体的研究进展[J]. 植物学报, 2006, 23(6): 718 -724 .
[10] 王丽, 王芹芹, 王幼群. 蚕豆叶片小叶脉不同发育时期ATP酶和酸性磷酸酶的细胞化学超微结构定位[J]. 植物学报, 2014, 49(1): 78 -86 .