植物分类与资源学报 2015, 37(2) 157-167 DOI:    10.7677/ynzwyj201514076  ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1971KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
赤霉素
合成代谢
信号转导
小桐子
系统发育
本文作者相关文章
高聪聪1、2
倪军1、3
陈茂盛1、2
徐增富1
PubMed
Article by Gao, C. C. 1、2
Article by Ni, J. 1、3
Article by Chen, M. S. 1、2
Article by Xu, Z. F. 1
能源植物小桐子赤霉素合成代谢及信号转导相关基因的鉴定及序列分析
 高聪聪1、2, 倪军1、3, 陈茂盛1、2, 徐增富1
1 中国科学院西双版纳热带植物园热带植物资源可持续利用重点实验室,云南 勐腊666303;
2 中国科学院大学,北京100049;3 中国科学技术大学生命科学学院,合肥230026
摘要

赤霉素 (gibberellin, GA) 是一类非常重要的植物激素,在植物种子萌发、茎干伸长、叶片生长、腺毛发育、花粉成熟、开花诱导和果实成熟等生长发育过程中都发挥着重要的作用。GA在一年生草本植物中可以促进开花,而在大多数多年生木本植物中则抑制成花诱导。为了更好地研究赤霉素在木本油料能源植物小桐子 (Jatropha curcas) 开花调控方面的作用机理,我们对小桐子整个基因组中参与GA合成代谢和信号转导的全部基因进行了鉴定和序列分析。这些基因包括6个多基因家族编码的蛋白, 即GA2氧化酶 (GA2oxidase, GA2ox)、GA3氧化酶 (GA3oxidase, GA3ox)、GA20氧化酶 (GA20oxidase, GA20ox)、GID1 (GIBBERELLIN INSENSITIVE DWARF1)、 DELLAs和Fbox蛋白,以及2个单基因编码的蛋白,EL1 (EARLY FLOWERING1) 和SPY (SPINDLY)。采用拟南芥和水稻中已经鉴定的上述基因编码的蛋白序列在小桐子基因组序列数据库和本实验的小桐子转录组数据库中进行BLASTP分析,找到17个同源蛋白的全长序列,并将其与28个拟南芥的、16个水稻的、24个葡萄的和22个蓖麻的同源蛋白构建系统发育树进行比对分析。结果表明,小桐子中参与赤霉素合成代谢及信号转导的大多数基因与蓖麻和葡萄同源基因的相似度更高。

关键词 赤霉素   合成代谢   信号转导   小桐子   系统发育  
Characterization of Genes Involved in Gibberellin Metabolism and Signaling Pathway in the Biofuel Plant Jatropha curcas
 GAO  Cong-Cong-1、2, NI  Jun-1、3, CHEN  Mao-Sheng-1、2, XU  Zeng-Fu-1
1 Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences,
Mengla, Yunnan 666303, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract:

Gibberellins (GAs) are essential phytohormones that control many aspects of plant development, including seed germination, stem elongation, leaf growth, flowering induction, development of glandular hairs, and pollen maturation. However, there are different mechanisms underlying GAregulated flowering in perennial woody plants and annual herb plants. To facilitate study about the role of GAs in the biofuel plant Jatropha curcas, we identified all genes involved in GA metabolism and signaling pathways. These genes include members of six gene families, ie., GA2oxidase (GA3ox), GA3oxidase (GA3ox), GA20oxidase (GA20ox), GA receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), DELLA growth inhibitors (DELLAs), and Fbox proteins, and two single genes SPINDLY (SPY) and EARLY FLOWERING1 (EL1). Jatropha homologs of genes from Arabidopsis and rice (Oryza sativa) were identified by blasting the genome and transcriptome database of Jatropha. Total 17 genes involved in GA metabolism and signaling pathway were identified from Jatropha, and were phylogenetically analyzed with homologs from Arabidopsis, rice, grape (Vitis vinifera), and castor bean (Ricinus communis). Our results showed that compared to Arabidopsis and rice, protein sequences of genes involved in GA metabolism and signaling pathways in Jatropha showed a higher similarity to those from castor bean and grape.

Keywords: Gibberellin   Metabolism   Phytohormone signaling   Jatropha curcas   Phylogenetic analysis  
收稿日期 2014-05-13 修回日期  网络版发布日期 2014-07-10 
DOI: 10.7677/ynzwyj201514076
基金项目:

云南省高端科技人才引进计划项目 (2009CI123);云南省应用基础研究计划重点项目 (2011FA034) 和中国科学院“一三五”专项 (XTBG-T02) 的资助

通讯作者:
作者简介:
作者Email:

参考文献:

Achard P, Genschik P, 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins[J]. Journal of Experimental Botany, 60: 1085—1092
Bennett MD, Leitch IJ, Price HJ et al., 2003. Comparisons with Caenorhabditis (~100Mb) and Drosophila (~175Mb) using flow cytometry show genome size in Arabidopsis to be ~157Mb and thus ~25% larger than the Arabidopsis Genome Initiative estimate of ~125Mb[J]. Annals of Botany, 91: 547—557
Bolle C, 2004. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 218: 683—692
Boss PK, Thomas MR, 2002. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation[J]. Nature, 416: 847—850
CanoAsseleih LM, 1986. Chemical investigation of Jatropha curcas L. seeds (PhD. Thesis ) [D]. London: University of London, UK
Carvalho CR, Clarindo WR, Praa MM et al., 2008. Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant[J]. Plant Science, 174: 613—617
Chan AP, Crabtree J, Zhao Q et al., 2010. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature Biotechnology, 28: 951—956
Cheng H, Qin L, Lee S et al., 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function[J]. Development, 131: 1055—1064
Costa GGL, Cardoso KC, Del Bem LEV et al., 2010. Transcriptome analysis of the oilrich seed of the bioenergy crop Jatropha curcas L.[J]. BMC Genomics, 11: 462
Dai C, Xue HW, 2010. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling[J]. EMBO Journal, 29: 1916—1927
Davière JM, Achard P, 2013. Gibberellin signaling in plants[J]. Development, 140: 1147—1151
Dill A, Sun TP, 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana[J]. Genetics, 159: 777—785
Fairless D, 2007. Biofuel: the little shrub that couldmaybe[J]. Nature, 449: 652—655
Ghosh A, Chikara J, Chaudhary DR, 2011. Diminution of economic yield as affected by pruning and chemical manipulation of Jatropha curcas L.[J]. Biomass and Bioenergy, 35: 1021—1029
Ghosh A, Chikara J, Chaudhary DR et al., 2010. Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas[J]. Journal of Plant Growth Regulation, 29: 307—315
Giacomelli L, RotaStabelli O, Masuero D et al., 2013. Gibberellin metabolism in Vitis vinifera L. during bloom and fruitset: functional characterization and evolution of grapevine gibberellin oxidases[J]. Journal of Experimental Botany, 64: 4403—4419
GoldbergMoeller R, Shalom L, Shlizerman L et al., 2013. Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of floweringcontrol genes in Citrus buds[J]. Plant Science, 198: 46—57
Harberd NP, 2003. Relieving DELLA restraint[J]. Science, 299: 1853—1854
Hauvermale AL, Ariizumi T, Steber CM, 2012. Gibberellin signaling: a theme and variations on DELLA repression[J]. Plant Physiology, 160: 83—92
Hirakawa H, Tsuchimoto S, Sakai H et al., 2012. Upgraded genomic information of Jatropha curcas L.[J]. Plant Biotechnology, 29: 123—130
Immanen J, Nieminen K, Duchens Silva H et al., 2013. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica[J]. BMC Genomics, 14: 885
Jaillon O, Aury JM, Noel B et al., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 449: 463—467
Kaul S, Koo HL, Jenkins J et al., 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 408: 796—815
Makkar HP, Becker K, 2009. Jatropha curcas, a promising crop for the generation of biodiesel and valueadded coproducts[J]. European Journal of Lipid Science and Technology, 111: 773—787
Makwana V, Shukla P, Robin P, 2010. GA application induces alteration in sex ratio and cell death in Jatropha curcas[J]. Plant Growth Regulation, 61: 121—125
Matsumoto T, Wu JZ, Kanamori H et al., 2005. The mapbased sequence of the rice genome[J]. Nature, 436: 793—800
Mitchum MG, Yamaguchi S, Hanada A et al., 2006. Distinct and overlapping roles of two gibberellin 3oxidases in Arabidopsis development[J]. Plant Journal, 45: 804—818
MuozFambuena N, Mesejo C, GonzálezMas MC et al., 2012. Gibberellic acid reduces flowering intensity in sweet orange[Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression[J]. Journal of Plant Growth Regulation, 31: 529—536
Nakajima M, Shimada A, Takashi Y et al., 2006. Identification and characterization of Arabidopsis gibberellin receptors[J]. The Plant Journal, 46 (5): 880—889
Olszewski N, Sun TP, Gubler F, 2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways[J]. Plant Cell, 14: S61—S80
Pi XJ (皮雪静), Pan BZ (潘帮珍), Xu ZF (徐增富), 2013. Induction of bisexual flowers by gibberellin in monoecious biofuel plant Jatropha curcas (Euphorbiaceae) [J]. Plant Diversity and Resources (植物分类与资源学报), 35 (1): 26—32
sterlund T, 2001. Structurefunction relationships of hormonesensitive lipase[J]. European Journal of Biochemistry, 268: 1899—1907
Peter H, Stephen GT, 2012. Gibberellin biosynthesis and its regulation[J]. Biochemical Journal, 444: 11—25
Randoux M, Jeauffre J, Thouroude T et al., 2012. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue[J]. Journal of Experimental Botany, 63: 6543—6554
Robertson M, Swain SM, Chandler PM et al., 1998. Identification of a negative regulator of gibberellin action, HvSPY, in barley[J]. Plant Cell, 10: 995—1007
Sakamoto T, Miura K, Itoh H et al., 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice[J]. Plant Physiology, 134: 1642—1653
Sato S, Hirakawa H, Isobe S et al., 2011. Sequence analysis of the genome of an oilbearing tree, Jatropha curcas L.[J]. DNA Research, 18: 65—76
Shimada A, UeguchiTanaka M, Nakatsu T et al., 2008. Structural basis for gibberellin recognition by its receptor GID1[J]. Nature, 456: 520—523
Shimada A, UeguchiTanaka M, Sakamoto T et al., 2006. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. Plant Journal, 48: 390—402
Song J (宋娟), Chen MS (陈茂盛), Li JL (李家龙) et al., 2013. Effects of soilapplied paclobutrazol on the vegetative and reproductive growth of biofuel plant Jatropha curcas[J]. Plant Diversity and Resources (植物分类与资源学报), 35 (2): 173—179
Sun TP, 2010. GibberellinGID1DELLA: a pivotal regulatory module for plant growth and development[J]. Plant Physiology, 154: 567—570
 Swain SM, Tseng TS, Olszewski NE, 2001. Altered expression of SPINDLY affects gibberellin response and plant development[J]. Plant Physiology, 126: 1174—1185
Thomas SG, Phillips AL, Hedden P, 1999. Molecular cloning and functional expression of gibberellin 2oxidases, multifunctional enzymes involved in gibberellin deactivation[J]. Proceedings of the National Academy of Sciences, 96: 4698—4703
Tongumpai P, Jutamanee K, Sethapakdi R et al., 1991. Variation in level of gibberellinlike substances, during vegetative growth and flowering of mango cv. Khiew Sawoey. ISHS Acta Horticulturae 291 (III International Mango Symposium), 291
Tyler L, Thomas SG, Hu J et al., 2004. DELLA proteins and gibberellinregulated seed germination and floral development in Arabidopsis[J]. Plant Physiology, 135: 1008—1019
UeguchiTanaka M, Ashikari M, Nakajima M et al., 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 437: 693—698
Wang H, Zou Z, Wang S et al., 2013. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L[J]. PLoS ONE, 8: e82817
Wild M, Daviere JM, Cheminant S et al., 2012. The Arabidopsis DELLA RGALIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses[J]. Plant Cell, 24: 3307—3319
Wilkie JD, Sedgley M, Olesen T, 2008. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 59: 3215—3228
Williams J, Phillips AL, Gaskin P et al., 1998. Function and substrate specificity of the gibberellin 3 betahydroxylase encoded by the Arabidopsis GA4 gene[J]. Plant Physiology, 117: 559—563
Willige BC, Ghosh S, Nill C et al., 2007. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. Plant Cell, 19: 1209—1220
Wilson RN, Heckman JW, Somerville CR, 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant Physiology, 100: 403—408
Winston E, 1992. Evaluation of paclobutrazol on growth, flowering and yield of mango cv. Kensington Pride[J]. Australian Journal of Experimental Agriculture, 32: 97—104
Xu YL, Li L, Wu KQ et al., 1995. The Ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20oxidasemolecular cloning and functional expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 92: 6640—6644
Yamaguchi N, Winter CM, Wu MF et al., 2014. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis[J]. Science, 344: 638—641
Zentella R, Zhang ZL, Park M et al., 2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 19: 3037—3057

本刊中的类似文章
1. 杨蕾1, 孙萍2, 林英超2, 唐中华2.乙烯信号参与调控拟南芥响应PEG模拟的干旱胁迫反应[J]. 植物分类与资源学报, 0,(): 89-96
2.徐廷志.吊钟花属的分类、地理分布和系统发育[J]. 植物分类与资源学报, 1982,4(04): 1-3
3.徐炳声.被子植物系统发育研究的现状与展望[J]. 植物分类与资源学报, 1984,6(01): 1-3
4.李恒 .重楼属系统发育探讨[J]. 植物分类与资源学报, 1984,6(04): 1-3
5.任祝三 俞绍文 方玉莲.冷层积和赤霉素对疏毛猕猴桃与酸枣子藤种子发芽的影响[J]. 植物分类与资源学报, 1985,7(02): 1-3
6.张少艾 徐炳声.长江三角洲石荠宁属植物的精油成分及其与系统发育的关系[J]. 植物分类与资源学报, 1989,11(02): 1-3
7.闵天禄 方瑞征.杜鹃属的系统发育与进化[J]. 植物分类与资源学报, 1990,12(04): 1-3
8.梁汉兴.裸蒴属的核型及三白草科四属间系统关系的探讨[J]. 植物分类与资源学报, 1991,13(03): 1-3
9.梁汉兴.三白草科花粉形态研究[J]. 植物分类与资源学报, 1992,14(04): 1-3
10.李林初 丛斌 刘纲 刘永强 翁若芬 .澳大利亚三种Callitris 植物的核型及其系统学意义[J]. 植物分类与资源学报, 1994,16(04): 1-3
11.马绍宾;胡志浩.小檗科鬼臼亚科的地理分布与系统发育[J]. 植物分类与资源学报, 1997,19(01): 1-3
12.施苏华,黄椰林,章群,金虹,谈凤笑,张宏达.四药门花属及其近缘植物ITS区序列分析和系统学意义[J]. 植物分类与资源学报, 1999,21(01): 1-3
13.何平, J.Koek-Noorman ,P.J.M.Maas .番荔枝科研究35.Guatteia类群和有关属的系统发育[J]. 植物分类与资源学报, 1999,21(03): 1-3
14.杜桂森 汪楣芝 张玉龙  .23种顶蒴藓类孢子形态的观察[J]. 植物分类与资源学报, 2000,22(03): 1-3
15.谈凤笑  施苏华  黄椰林  杜雅青  王玉国  龚洵  龚洵  .使君子科风车子亚科核糖体DNAITS区序列分析及系统学意义[J]. 植物分类与资源学报, 2001,23(02): 1-3
16.高连明,杨俊波,张长芹,李德铢.基于ITS序列分析探讨杜鹃属映山红亚属的组间关系[J]. 植物分类与资源学报, 2002,24(03): 1-3
17.王峰 李德铢.基于广义形态学性状对木通科的分支系统学分析[J]. 植物分类与资源学报, 2002,24(04): 1-3
18.陈永燕 李德铢 王红   .基于三个DNA片段讨论菖蒲科的分子系统学[J]. 植物分类与资源学报, 2002,24(06): 1-3
19.江莎 中村辉子 山本福寿.赤霉素对水平放置水曲柳幼苗的负向重性和木材形成的影响[J]. 植物分类与资源学报, 2003,25(03): 1-3
20.张会 黄勤妮 杜桂森.利用核核糖体DNA内转录间隔区(ITS)探讨广义羽藓科系统发育[J]. 植物分类与资源学报, 2003,25(04): 1-3
21.周志炎.中生代银杏类植物系统发育、分类和演化趋向[J]. 植物分类与资源学报, 2003,25(04): 1-3
22.Habib Ahmad,Shahida Hasnain.芜菁的诱导同源四倍体减数分裂分析[J]. 植物分类与资源学报, 2004,26(03): 1-3
23.华丽,张道远,潘伯荣.中国柽柳属和水柏枝属的分子系统学研究[J]. 植物分类与资源学报, 2004,26(03): 1-3
24.李春香,陆树刚,杨群.滇南桫椤的系统位置:来自叶绿体trnL内含子和DNA trnLF间隔区序列的证据[J]. 植物分类与资源学报, 2004,26(05): 1-3
25.余迪求1 , 陈利钢1 , 2 , 张利平1 , 2.转录调控因子WRKY 超级家族: 起源、结构和功能[J]. 植物分类与资源学报, 2006,1(01): 69-77
26. 杨俊波1, 杨世雄1**, 李德铢1, 雷立公1, 池田达哉2, 吉野熙道3.基于matR 基因序列分析的山茶科系统关系*[J]. 植物分类与资源学报, 2006,01(01): 29-36
27. 余迪求1, 陈利钢1、2, 张利平1、2.转录调控因子WRKY 超级家族: 起源、结构和功能*[J]. 植物分类与资源学报, 2006,01(01): 69-77
28.杨俊波1 , 杨世雄1 , 李德铢1 , 雷立公1 , 池田达哉2 , 吉野熙道3 .基于matR 基因序列分析的山茶科系统关系[J]. 植物分类与资源学报, 2006,1(01): 29-36
29. 周丽蓉, 余研, 宋荣秀, 何兴金, 蒋彦, 李旭锋, 杨毅**.中国特有诸葛菜复合群的系统发育关系*[J]. 植物分类与资源学报, 2006,02(02): 127-137
30.秦虹; 宋松泉; 龙春林; 程红焱.小桐子的组织培养和植株再生[J]. 植物分类与资源学报, 2006,28(06): 649-652
31.陈士超1, 2 , 杨 红1 , 李 珊1 , 祝 建1 , 傅承新2 .贝叶斯推论及其在百合目分子系统学中的应用[J]. 植物分类与资源学报, 2007,29(02): 161-166
32.徐平珍1 , 2 , 刘 涛1 , 2 , 杨 莹1 , 2 , 胡运乾1 .脱落酸在植物花发育过程中的作用[J]. 植物分类与资源学报, 2007,29(02): 215-222
33.许树成1 , 2 , 丁海东2 , 桑建荣2 .植物细胞活性氧种类、代谢及其信号转导[J]. 植物分类与资源学报, 2007,29(03): 355-365
34.向振勇1 , 2 , 3 , 宋松泉2 , 王桂娟2 , 陈茂盛2 , 杨成源2 , 龙春林1 .云南南部不同种源地小桐子遗传多样性的ISSR 分析[J]. 植物分类与资源学报, 2007,29(06): 619-624
35.陈家辉1 , 2 , 孙 航1 , 杨永平1 .柳属的分支系统学分析[J]. 植物分类与资源学报, 2008,30(01): 1-7
36. 周丽蓉, 余 研, 宋荣秀, 何兴金, 蒋 彦, 李旭锋, 杨 毅 .中国特有诸葛菜复合群的系统发育关系[J]. 植物分类与资源学报, 2009,31(02): 127-137
37. 王 曦, 龙春林 .云南小桐子资源调查与评价[J]. 植物分类与资源学报, 2009,31(05): 455-460
38. 梁冠欣1,2, , 邢福武1.堇菜属组间的系统发育与亲缘关系:基于trnL-trnF、psbAtrnH、rpL16、ITS序列,细胞学以及形态学证据[J]. 植物分类与资源学报, 2010,32(6): 477-488
39. 卫然1、2, 张宪春1, 齐新萍1、2、3.肠蕨属和同囊蕨属的系统位置——基于叶绿体rbcL基因和rps4+rps4trnS基因间隔区序列的证据[J]. 植物分类与资源学报, 2010,32(S17): 46-54
40. 杨蕾1, 孙萍2, 林英超2, 唐中华2.乙烯信号参与调控拟南芥响应PEG模拟的干旱胁迫反应[J]. 植物分类与资源学报, 2010,32(S17): 89-96
41. 王福云, 蔡传涛, 文彬.珍稀药用植物云南萝芙木种子休眠与萌发特性[J]. 植物分类与资源学报, 2011,33(2): 229-234
42. 张韵洁, 李德铢.叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报, 2011,33(4): 365-375
43. 杨春1、2, 刘爱忠1.小桐子EST-SSR分子标记的开发与种质遗传多样性分析[J]. 植物分类与资源学报, 2011,33(5): 529-534
44. 骆洋1、2、5, 何延彪3, 李德铢1、2, 王雨华3、4, 伊廷双2, 王红1、2.中国植物志、Flora of China和维管植物新系统中科的比较[J]. 植物分类与资源学报, 2012,34(3): 231-238
45. 裴男才.利用植物DNA条形码构建亚热带森林群落系统发育关系——以鼎湖山样地为例[J]. 植物分类与资源学报, 2012,34(3): 263-270
46. 汤晓辛1、2, 黄双全1.花色多样性与变异的研究进展[J]. 植物分类与资源学报, 2012,34(3): 239-247
47. 李恒1、3, 普建新2, 李捷1.唇形科香茶菜属二萜类化合物分布规律[J]. 植物分类与资源学报, 2013,35(1): 81-88
48. 皮雪静1、2, 潘帮珍1、2, 徐增富1.赤霉素诱导小桐子产生两性花[J]. 植物分类与资源学报, 2013,35(1): 26-32
49. 宋娟1、2, 陈茂盛1、2, 李家龙1、3, 牛龙见1、3, 徐增富1.土施多效唑对小桐子营养生长与生殖生长的影响[J]. 植物分类与资源学报, 2013,35(2): 173-179
50. 杜燕, 张挺, 蔡杰, 杨湘云.iFlora中的种子形态学信息[J]. 植物分类与资源学报, 2013,35(6): 774-778
51. 罗亚皇1、2、3、4, 刘杰1, 高连明1**, 李德铢1、2.DNA条形码在生态学研究中的应用与展望[J]. 植物分类与资源学报, 2013,35(6): 761-768
52. 卢萍, 高利霞, 金凤, 恩和巴雅尔.基于psbAtrnH序列的十种棘豆属植物分子系统学研究[J]. 植物分类与资源学报, 2014,36(03): 279-284
53. 刘德团, 曹军, 许琨.杨树和葡萄UBX蛋白质家族分析[J]. 植物分类与资源学报, 2014,36(03): 349-357

文章评论

Copyright by 植物分类与资源学报