植物分类与资源学报 2015, 37(03) 283-292 DOI:    10.7677/ynzwyj201514098  ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1655KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
环式电子传递
生长温度
光抑制
光保护
光系统II
本文作者相关文章
黄伟
胡虹
PubMed
Article by Huang, W.
Article by Hu, H.
生长温度对烟草叶片环式电子传递活性的影响
 黄伟, 胡虹
中国科学院昆明植物研究所资源植物与生物技术重点实验室,昆明650201
摘要

高等植物的光合机构在环境胁迫条件下非常容易产生光抑制,环式电子传递在光合机构的光保护中发挥着重要的作用。但是,生长温度对环式电子传递的影响并不清楚。本研究测定了在24/18℃和32/26℃条件下生长40天的烟草 (K326) 叶片的气体交换、叶绿素荧光和P700氧化还原态的光响应曲线。结果表明,烟草叶片在两种生长温度下的的光合能力、光化学淬灭、非光化学淬灭和通过光系统II的电子传递速率 (ETR II) 均没有差异。但是,在强光条件下,生长在24/18℃的叶片比生长在32/26℃的具有更高的通过光系统I的电子传递速率 (ETR I) 和ETR I/ETR II比值。短时间的强光处理后,生长在24/18℃的叶片具有较高的光系统II最大量子产额 (Fv/Fm),表明环式电子传递活性的上调有助于缓解生长在24/18℃的叶片光系统II受到的光损伤。综上所述,环式电子传递活性的增强是植物适应较低生长温度的重要策略。

关键词 环式电子传递   生长温度   光抑制   光保护   光系统II  
Effect of Growth Temperature on the Activity of Cyclic Electron Flow in Tobacco Leaves
 HUANG  Wei, HU  Hong
 Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany,
Chinese Academy of Sciences, Kunming 650201, China
Abstract:

Cyclic electron flow (CEF) around photosystem I (PSI) is an important mechanism for photoprotection in higher plants under environmental stresses. However, the response of CEF activity to growth temperature has not been clarified. We here monitored gas exchange, chlorophyll fluorescence, and the P700 redox state over a range of light intensities in leaves of tobacco cultivar ‘k326’ grown at 24/18℃ and 32/26℃ (day/night). No significant difference was found in the capacity of photosynthetic CO2 assimilation between the plants grown at 24℃ and 32℃. In addition, the light response changes in the photochemical quenching of photosystem II (Y(II)) and nonphotochemical quenching (NPQ) did not differ significantly between those plants. Light response curves indicated that the plants grown at 24℃ and 32℃ displayed the same level of electron flow through PSII (ETR II) irrespective of light intensity. However, under intense light, plants grown at 24℃ showed significantly higher electron flow through PSI (ETR I). The ETR I/ETR II ratio was significantly higher in plants grown at 24℃ when exposed to intense light.  Furthermore, after shortterm treatment with strong light at 24℃, the maximum quantum yield of photosystem II (Fv/Fm) was significantly higher in plants grown at 24℃ than that grown at 32℃. Taken together, our results suggest that enhancement of CEF activity in plants grown at 24℃ alleviates PSII photoinhibition, which is an important strategy in tobacco for acclimating to a relatively low growth temperature.

Keywords: Cyclic electron flow   Growth temperature   Photoinhibition   Photoprotection Photosystem II  
收稿日期 2014-07-01 修回日期  网络版发布日期 2014-07-25 
DOI: 10.7677/ynzwyj201514098
基金项目:

National Natural Science Foundation of China (grant 31300332) and the Following Scientific Foundations (110201101003 (TS03), 2011YN02, 2011YN03)

 

通讯作者:
作者简介:
作者Email:

参考文献:

Anderson JM, Chow WS, 2002. Structural and functional dynamics of plant photosystem II[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 357: 1421—1430
Baker NR, 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59: 89—113
Barth C, Krause HG, 2002. Study of tobacco transformants to assess the role of chloroplastic NAD (P) H dehydrogenase in photoprotection of photosystems I and II[J]. Planta, 216: 271—279
Bukhov NG, Wiese C, Neimanis S et al., 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport[J]. Photosynthesis Research, 59: 81—93
Ettinger WF, Clear AM, Fanning KJ et al., 1999. Identication of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane[J]. Plant Physiology, 119: 1379—1385
Genty B, Briantais JM, Baker NR, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 990: 87—92
Golding AJ, Johnson GN, 2003. Downregulation of linear and activation of cyclic electron transport during drought[J]. Planta, 218: 107—114
Hakala M, Tuominen I, Keranen M et al., 2005. Evidence for the role of the oxygenevolving manganese complex in photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta, 1706: 68—80
Havaux M, 1996. Shortterm responses of photosystem I to heat stress[J]. Photosynthesis Research, 47: 85—97
Hendrickson L, Furbank RT, Chow WS, 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 82: 73—81
Horvath EM, Peter SO, Joet T et al., 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure[J]. Plant Physiology, 123: 1337—1349
Huang W, Zhang SB, Cao KF, 2011. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature[J]. Plant and Cell Physiology, 52: 297—305
Huang W, Yang SJ, Zhang SB et al., 2012. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 235: 819—828
Huang W, Fu PL, Jiang YJ et al., 2013. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia submitted to a prolonged drought in a tropical limestone forest[J]. Tree Physiology, 33: 211—220
Inskeep WP, Bloom PR, 1985. Extinction coefficients of chlorophyll a and b in N, Ndimethylformamide and 80% acetone[J]. Plant Physiology, 77: 483—485
Johnson GN, 2005. Cyclic electron transport in C3 plants: fact or artifact[J]. Journal of Experimental Botany, 56: 407—416
Johnson GN, 2011. Physiology of PSI cyclic electron transport in higher plants[J]. Biochimica et Biophysica Acta, 1807: 384—389
Klüghammer C, Schreiber U, 1994. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+absorbance changes at 830nm[J]. Planta, 192: 261—268
Klüghammer C, Schreiber U, 2008. Saturation pulse method for assessment of energy conversion in PSI[J]. PAM Application Notes (PAN), 1: 11—14
Kim SJ, Lee CH, Hope AB et al., 2001. Inhibition of photosystem I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light[J]. Plant and Cell Physiology, 42: 842—848
Kou JC, Takahashi S, Oguchi R et al., 2013. Estimation of the steadystate cyclic electron flux around PSI in spinach leaf discs in white light, CO2enriched air and other varied conditions[J]. Functional Plant Biology, 40: 1018—1028
Kramer DM, Johnson G, Kiirats O et al., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 79: 209—218
Krieger A, Weis E, 1993. The role of calcium in the pHdependent control of Photosystem II[J]. Photosynthesis Research, 37: 117—130
Laureau C, De Paepe R, Latouche G et al., 2013. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L[J]. Plant, Cell and Environment, 36: 1296—1310
Li XG, Duan W, Meng QW et al., 2004. The function of chloroplastic NAD (P) H dehydrogenase in tobacco during chilling stress under low irradiance[J]. Plant and Cell Physiology, 45: 103—108
Long SP, Bernacchi CJ, 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 54: 2393—2401
Miyake C, 2010. Alternative electron flows (waterwater cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions[J]. Plant and Cell Physiology, 51: 1951—1963
Munekage Y, Hashimoto M, Miyake C et al., 2004. Cyclic electron ow around photosystem I is essential for photosynthesis[J]. Nature, 429: 579—582
Munekage Y, Hojo M, Meurer J et al., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis[J]. Cell, 110: 361—371
Murata N, Takahashi S, Nishiyama Y et al., 2007. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta, 1767: 414—421
Nandha B, Finazzi G, Joliot P et al., 2007. The role of PGR5 in the redox poising of photosynthetic electron transport[J]. Biochimica et Biophysica Acta, 1767: 1252—1259
Nishiyama Y, Allakhverdiev SI, Murata N, 2011. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II[J]. Physiologia Plantarum, 142: 35—46
Nishiyama Y, Allakhverdiev SI, Yamamoto H et al., 2004. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803[J]. Biochemistry, 43: 11321—11330
Nishiyama Y, Yamamoto H, Allakhverdiev SI et al., 2001. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. EMBO Journal, 20: 5587—5594
Niyogi KK, Grossman AR, Bjorkman O, 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in regulation of photosynthetic energy conversion[J]. Plant Cell, 10: 1121—1134
Niyogi KK, Shih C, Chow WS et al., 2001. Photoprotection in a zeaxanthin and lutein deficient double mutant of Arabidopsis[J]. Photosynthesis Research, 67: 139—145
Oguchi R, Terashima I, Chow WS, 2009. The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants[J]. Plant and Cell Physiology, 50: 1815—1825
Oguchi R, Douwstra P, Fujita T et al., 2011. Intraleaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers[J]. New Phytologist, 191: 146—159
Ohnishi N, Allakhverdiev SI, Takahashi S et al., 2005. Twostep mechanism of photodamage to photosystem II: step one occurs at the oxygenevolving complex and step two occurs at the photochemical reaction center[J]. Biochemistry, 44: 8494—8499
Okegawa Y, Kagawa Y, Kobayashi Y et al., 2008. Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts[J]. Plant and Cell Physiology, 49: 825—834
Oxborough K, Baker NR, 1997. Resolving chlorophyll a fluorescence images of photosynthetic efciency into photochemical and nonphotochemical componentscalculation of qP and Fv′/Fm′ without measuring Fo′[J]. Photosynthesis Research, 54: 135—142
Peltier G, Cournac L, 2002. Chlororespiration[J]. Annual Review of Plant Biology, 53: 523—550
Shikanai T, 2007. Cyclic electron transport around photosystem I: genetic approaches[J]. Annual Review of Plant Biology, 58: 199—217
Shikanai T, Endo T, Hashimoto T et al., 1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I[J]. Proceedings of the National Academy of Sciences of the United States of America, 95: 9705—9709
Streb P, Josse EM, Gallout E et al., 2005. Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis[J]. Plant, Cell and Environment, 28: 1123—1135
Takahashi S, Bauwe H, Badger MR, 2007. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis[J]. Plant Physiology, 144: 487—494
Takahashi S, Murata N, 2008. How do environmental stresses accelerate photoinhibition[J]. Trends in Plant Science, 13: 178—182
Takahashi S, Milward SE, Fan DY et al., 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis[J]. Plant Physiology, 149: 1560—1567
Takahashi S, Badger MR, 2011. Photoprotection in plants: a new light on photosystem II damage[J]. Trends in Plant Science, 16: 53—60
Teicher HB, Mller BL, Scheller HV, 2000. Photoinhibition of photosystem I in fieldgrown barley (Hordeum vulgare L.): induction, recovery and acclimation[J]. Photosynthesis Research, 64: 53—61
von Caemmerer S, Farquhar GD, 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 153: 376—387
Wang P, Duan W, Takabayashi A et al., 2006. Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress[J]. Plant Physiology, 141: 465—474
Yamori W, Evans JR, von Caemmerer S, 2010. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves[J]. Plant, Cell and Environment, 33: 332—343
Yamori W, Sakata N, Suzuki Y et al., 2011. Cyclic electron flow around photosystem I via chloroplast NAD (P) H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice[J]. Plant Journal, 68: 966—976

本刊中的类似文章
1. 朱宏涛1 , 2 , 陈可可1 , 王 东1 , 杨崇仁1 , 李 元2 , 张颖君1 .普洱熟茶后发酵优势菌臭曲霉的生物学特性[J]. 植物分类与资源学报, 2008,30(04): 510-514
2. 陈 悦1 , 2 , 许大全1 .饱和白光引起的光系统II 捕光复合体(LHCII ) 从反应中心复合体脱离不同于弱红光引起的状态1 向状态2 的转换[J]. 植物分类与资源学报, 2009,31(1): 67-74
3. 黄伟, 曹坤芳.几内亚格木和降香黄檀对热带北缘地区冬季低温的光合适应[J]. 植物分类与资源学报, 2014,36(03): 310-320
4. 匡美龄, 张石宝.西藏虎头兰和墨兰对强光的生理响应[J]. 植物分类与资源学报, 2015,37(01): 55-62

文章评论

Copyright by 植物分类与资源学报