植物分类与资源学报 2015, 37(03) 309-317 DOI:     ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1542KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
比叶重
干物质含量
耐霜力
Fv/Fm
分布区
本文作者相关文章
苏文华
施展
杨波
杨建军
赵冠华
周睿
PubMed
Article by Su, W. H.
Article by Shi, Z.
Article by Yang, B.
Article by Yang, J. J.
Article by Zhao, G. H.
Article by Zhou, R.
滇石栎沿纬度梯度叶片功能性状的种内变化
 苏文华, 施展, 杨波, 杨建军, 赵冠华, 周睿
云南大学生态学与地植物学研究所,昆明650091
摘要

对滇石栎分布区的南部边缘到北部边缘的8个种群进行取样,分析叶片的比叶重、叶密度、低温敏感度和Fv/Fm 4个功能性状的变异及其相关性,主要探讨叶片功能性状的种内变化程度,种群、个体和叶片间的差异对功能性状变异的相对贡献,以及种群叶片功能性状变化与生境纬度和气温的关系。研究结果显示,4个功能性状的种内变异系数分别为160%、177%、211%和401%。种内的变异源来自种群、个体和叶片间的差异,其中种群间和叶片间的差异贡献最大。生境气温与比叶重和Fv/Fm分别有显著的负相关和正相关关系,与叶密度和低温敏感度分别呈开口向下和开口向上的抛物线变化。在4个性状的主成份分析显示,没有一个种群更靠近第1和第2主成份的原点,分布区边缘种群位于第一轴的两侧。研究结果表明,物种在分布区内为适应环境变化叶片功能性状产生变化,没有一个种群可代表物种水平上的叶片功能性状数量特征。在研究植物种功能性状的平均值或进行功能性状的种间比较时,种内变异不能被忽视。

关键词 比叶重   干物质含量   耐霜力   Fv/Fm   分布区  
Intraspecific Functional Trait Variation in a Tree Species (Lithocarpus dealbatus) along Latitude
 SU  Wen-Hua, SHI  Zhan, YANG  Bo, YANG  Jian-Jun, ZHAO  Guan-Hua, ZHOU  Rui
Institute of Ecology and Geobotany, Yunnan University, Kunming 650091, China
Abstract:

We quantied intraspecic variation and covariation of leaf mass per area (LMA), leaf dry matter concentration (LD), leaf frost sensitivity (LFS) and Fv/Fm of leaves of 8 Lithocarpus dealbatus populations across the geographical distribution from north to south to determine the magnitude and whether it is related to environmental conditions, latitude and mean annual temperature. The results showed that the total variation (coefcient of variation) of LMA, LD, LFS and Fv/Fm were 160%, 177%, 211% and 401% respectively. The total intraspecic variation was contributed by the difference among populations, individuals and leaves. The difference among populations accounted for the largest total variation in LMA, LD and Fv/Fm, whereas the difference among leaves accounted for the largest total variation in LFS. On population level, LMA was significantly positive related to the latitude and Fv/Fm was significantly negative, but LD and LFS were not related to the latitude.  LMA decreased while Fv/Fm increased significantly with the increase of mean annual temperature. LD was a downward quadratic variation, and LFS was upward with the increase of mean annual temperature. The principal component analysis of four functional traits showed that no population was located nearer to the origin of the first and second principal component, and populations at the edge of distribution area located at both sides of the first principal component axis. The results suggested that the environmental variation in the distribution could cause intraspecic variation of functional traits. There is no population could represent a species in functional traits. When an average trait value for species is considered and trait comparisons are done among species, intraspecific variation of traits could not be ignored.

Keywords: Leaf mass per area   Leaf dry matter concentration   Leaf frost sensitivity   Fv/Fm   Distribution area  
收稿日期 2014-07-25 修回日期  网络版发布日期 2014-09-29 
DOI:
基金项目:

国家自然科学基金 (31260111)

通讯作者:
作者简介:
作者Email:

参考文献:

吴宁, 罗鹏译 (Krner C, 1999), 2009. 高山植物功能生态学 (Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems) [M]. 北京: 科学出版社, 18—21
徐永春, 1990. 云南树木图志[M]. 昆明: 云南科技出版社, 497
Alonso C, Herrera CM, 2001. Patterns made of patterns: variation and covariation of leaf nutrient concentrations within and between populations of Prunus mahaleb[J]. New Phytologist, 150: 629—640
Albert CH, Thuiller W, Yoccoz NG et al., 2010. Intraspecific functional variability: extent, structure and sources of variation[J]. Journal of Ecology, 98: 604—613
Cianciaruso MV, Batalha MA, Gaston KJ et al., 2009. Including intraspecific variability in functional diversity[J]. Ecology, 90: 81—89
Chuine I, 2010. Why does phenology drive species distribution?[J]. Philosophical Transactions of the Royal Society B, 365: 3149—3160
Cordell S, Goldstein G, MuellerDombois D et al., 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity[J]. Oecologia, 113: 188—196
Cornelissen JHC, Lavorel S, Garnier E et al., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 51: 335—380
DemmigAdams B, Adams WW, 1992. Photoprotection and other responses of plants to high light stress[J].  Annual Review of Plant Biology, 43: 599—626
Diaz S, Cabido M, 2001. Vive la difference: plant functional diversity matters to ecosystem processes[J]. Trends in Ecology & Evolution, 16: 646—655
Diaz S, Hodgson, JG, Thompson K et al., 2004. The plant traits that drive ecosystems: Evidence from three continents[J]. Journal of Vegetation Science, 15: 295—304
Diaz S, Lavorel S, Bello DF et al., 2007. Land change science special feature: incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceeding of the National Academy of Sciences, USA, 104: 20684—20689
Fajardo A, Piper FI, 2011. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile[J]. New Phytologist, 189: 259—271
Falsenstein J, 1985. Phylogenies and the comparative method[J]. The American Naturalist, 125: 1—15
Garnier E, Shipley B, Roumet C et al., 2001. A standardized protocol for the determination of specic leaf area and leaf dry matter content[J]. Functional Ecology, 15: 688—695
Grime JP, Thompson K, Hunt R et al., 1997. Integrated screening validates primary axes of specialization in plants[J]. Oikos, 79: 259—281
Guisan A, Thuiller W, 2005. Predicting species distribution: offering more than simple habitat models[J]. Ecology Letters, 8: 993—1009
Hallik L, Niinemets U, Wright IJ, 2009. Are species shade and drought tolerance reflected in leaflevel structural and functional differentiation in Northern Hemisphere temperate woody flora[J]. New Phytologist, 184: 257—274
Hulshof CM, Swenson NG, 2010. Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest[J]. Functional Ecology, 24: 217—223
Lavorel S, McIntyre S, Landsberg J et al., 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance[J]. Trends in Ecology and Evolution, 12: 474—478
McGill BJ, Enquist BJ, Weiher E et al., 2006. Rebuilding community ecology from functional traits[J]. Trends in Ecology and Evolution, 21: 178—185
Messier J, McGill BJ, Lechowicz MJ, 2010. How do traits vary across ecological scales? A case for traitbased ecology[J]. Ecology Letters, 13: 838—848
McIntyre S, Lavorel S, Landsberg J et al., 1999. Disturbance response in vegetation 2 towards a global perspective on functional traits[J]. Journal of Vegetation Science, 10: 621—630
Poorter H, Garnier E, 1999. Ecological significance of inherent variation in relative growth rate and its components[A]// Pugnaire FI, Valladares F eds., Handbook of Functional Plant Ecology[M]. New York: Marcel Dekker, 81—120
Poorter H, Niinemets U, Poorter L et al., 2009. Causes and consequences of variation in leaf mass per area (LMA): a metaanalysis[J]. New Phytologist, 182: 565—588
Reich PB, Wright IJ, Cavender BJ et al., 2003. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 164: 143—164
Ryser P, Aeschlimann U, 1999. Proportional drymass content as an underlying trait for the variation in relative growth rate among 22 Eurasian populations of Dactylis glomerata sl.[J]. Functional Ecology, 13: 473—482
Ryser P, Urbas P, 2000. Ecological significance of leaf life span among Central European grass species[J]. Oikos, 91: 41—50
Shipley B, Vu TT, 2002. Dry matter content as a measure of dry matter concentration in plants and their parts[J]. New Phytologist, 153: 259—264
Sokal RR, Rohlf FJ, 2001. Biometry: The Principles and Practice of Statistics in Biological Research (Third edition) [M]. New York: WH. Freeman and Company, 272—320
Souto CP, Premoli AC, Reich PB, 2009. Complex bioclimatic and soil gradients shape leaf trait variation in Embothrium coccineum (Proteaceae) among austral forests in Patagonia[J]. Revista Chilena de Historia Natural, 82: 209—222
Thuiller W, Lavorel S, Midgley G et al., 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa[J]. Ecology, 85: 1688—1699
Violle C, Navas ML, Vile D et al., 2007. Let the concept of trait be functional[J]. Oikos, 116: 882—892
Westoby M, Wright IJ, 2006. Landplant ecology on the basis of functional traits[J]. Trends in Ecology and Evolution, 21: 261—268
Wright IJ, Ackerly DD, Bongers F et al., 2007. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests[J]. Annals of Botany, 99: 1003—1015Wright IJ, Reich PB, Cornelissen J et al., 2005. Modulation of leaf economic traits and trait relationships by climate[J]. Global Ecology and Biogeography, 14: 411—421
Wright IJ, Reich PB, Westoby M et al., 2004. The worldwide leaf economics spectrum[J]. Nature, 428: 821—827

本刊中的类似文章
1.李锡文.云南植物区系[J]. 植物分类与资源学报, 1985,7(04): 1-3
2.李恒.横断山区的湖泊植被[J]. 植物分类与资源学报, 1987,9(03): 1-3
3.李锡文 李 捷.檬果樟属的分类与分布兼论这一分布区类型的特征[J]. 植物分类与资源学报, 1991,13(01): 1-3
4.谢国文 丁宝章 王遂义.赣北云居山植物区系地理探讨[J]. 植物分类与资源学报, 1991,13(04): 1-3
5.吴征镒.中国种子植物属的分布区类型[J]. 植物分类与资源学报, 1991,13(S4): 1-3
6.李捷.云南樟科植物区系地理[J]. 植物分类与资源学报, 1992,14(04): 1-3
7.李恒.岩芋属分布区的形成和间断[J]. 植物分类与资源学报, 1992,14(S5): 1-3
8.郝日明;刘方勋;杨志斌;刘守炉;姚淦.华东植物区系成分与日本植物间的联系[J]. 植物分类与资源学报, 1996,18(03): 1-3
9.张明理.锦鸡儿属分析生物地理学的研究[J]. 植物分类与资源学报, 1998,20(01): 1-3
10.丁炳阳,陈根荣,程秋波,陈豪庭,郑卿洲,叶立新.浙江凤阳山自然保护区种子植物区系的统计分析[J]. 植物分类与资源学报, 2000,22(01): 1-3
11.张明理.黄耆属簇毛黄耆亚属生物地理学研究[J]. 植物分类与资源学报, 2003,25(01): 1-3
12.吴征镒 周浙昆 李德铢 彭华 孙航.世界种子植物科的分布区类型系统[J]. 植物分类与资源学报, 2003,25(03): 1-3
13.吴征镒.《世界种子植物科的分布区类型系统》的修订[J]. 植物分类与资源学报, 2003,25(05): 1-3
14.张桂宾.河南种子植物种分布区类型研究[J]. 植物分类与资源学报, 2004,26(02): 1-3
15.常玮, 李树云, 胡虹, 樊亚宇.三个东方百合品种在滇中鳞茎繁育中的光合特性[J]. 植物分类与资源学报, 2007,29(01): 109-114
16. 毕迎凤1、2, 许建初3, 李巧宏1, Antoine Guisan4, Wilfried Thuiller5.应用BioMod集成多种模型研究物种的空间分布——以铁杉在中国的潜在分布为例[J]. 植物分类与资源学报, 2013,35(5): 647-655
17. 杨亲二.植物区系地理学重要术语“分布区类型”的英译问题[J]. 植物分类与资源学报, 2014,36(02): 142-144

文章评论

Copyright by 植物分类与资源学报