植物多样性 2018, 40(04) 141-146 DOI:   10.1016/j.pld.2018.07.003  ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1690KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Big data
Biogeography
Ecology
Evolution
Flora
Mega-phylogeny
本文作者相关文章
PubMed
Current progress and future prospects in phylofloristics
Rong Lia, Lishen Qiana,b, Hang Suna
a Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
摘要

The species composition of regional plant assemblages can in large part be explained by a long history of biogeographical and evolutionary events. Traditional attempts of floristic studies typically focus on the analyses of taxonomic composition, often ignoring the rich context that evolutionary history can provide. In 2014, Swenson and Umana introduced the term ‘phylofloristics’ to define a phylogenetically enabled analysis of the species composition of regional floras. Integrating phylogenetic information into traditional floristic analysis can provide a promising way to explore the ecological, biogeographic, and evolutionary processes that drive plant assemblies at multiple spatial scales. In this review, we summarize the current progress on the phylogenetic structure, spatial phylogenetic pattern, origin and diversification, phylogenetic regionalization of floristic assemblages, and application of phylogenetic information in biodiversity conservation. These summaries highlight the importance of incorporating phylogenetic information to improve our understanding of floristic assembly from an evolutionary perspective. The review ends with a brief outlook on future challenges for phylofloristic studies, including generating a highly resolved species-level phylogenetic tree, compiling detailed and refined information regarding the geographic distribution of all plant life, extracting trait information from publications and herbarium specimens, and developing technological and methodological approaches for big data analysis.

关键词 Big data   Biogeography   Ecology   Evolution   Flora   Mega-phylogeny  
Current progress and future prospects in phylofloristics
Rong Lia, Lishen Qiana,b, Hang Suna
a Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:

The species composition of regional plant assemblages can in large part be explained by a long history of biogeographical and evolutionary events. Traditional attempts of floristic studies typically focus on the analyses of taxonomic composition, often ignoring the rich context that evolutionary history can provide. In 2014, Swenson and Umaña introduced the term ‘phylofloristics’ to define a phylogenetically enabled analysis of the species composition of regional floras. Integrating phylogenetic information into traditional floristic analysis can provide a promising way to explore the ecological, biogeographic, and evolutionary processes that drive plant assemblies at multiple spatial scales. In this review, we summarize the current progress on the phylogenetic structure, spatial phylogenetic pattern, origin and diversification, phylogenetic regionalization of floristic assemblages, and application of phylogenetic information in biodiversity conservation. These summaries highlight the importance of incorporating phylogenetic information to improve our understanding of floristic assembly from an evolutionary perspective. The review ends with a brief outlook on future challenges for phylofloristic studies, including generating a highly resolved species-level phylogenetic tree, compiling detailed and refined information regarding the geographic distribution of all plant life, extracting trait information from publications and herbarium specimens, and developing technological and methodological approaches for big data analysis.

Keywords: Big data   Biogeography   Ecology   Evolution   Flora   Mega-phylogeny  
收稿日期 2018-04-16 修回日期 2018-07-10 网络版发布日期  
DOI: 10.1016/j.pld.2018.07.003
基金项目:

This study was supported by the National Natural Science Foundation of China (grant no. 31570212, 31770228, 31370243) and the Talent Project of Yunnan (grant no. 2015HB092).

通讯作者: Hang Sun
作者简介:
作者Email: sunhang@mail.kib.ac.cn

参考文献:

Cadotte, M.W., Davies, T.J., Regetz, J., Kembel, S.W., Cleland, E.E., Oakley, T.H., 2010.Phylogenetic diversity metrics for ecological communities:integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96-105.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012.
Biodiversity loss and its impact on humanity. Nature 486, 59-67.
Cavender-Bares, J., Ackerly, D.D., Hobbie, S.E., Townsend, P.A., 2016. Evolutionary legacy effects on ecosystems:biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433-462.
Chao, A., Chiu, C.H., Jost, L., 2014. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297-324.
Chen, Y.S., Deng, T., Zhou, Z., Sun, H., 2018. Is the East Asian flora ancient or not? Natl. Sci. Rev. 0, 1-13.
Costion, C.M., Edwards, W., Ford, A.J., Metcalfe, D.J., Cross, H.B., Harrington, M.G., Richardson, J.E., Hilbert, D.W., Lowe, A.J., Crayn, D.M., 2015. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 21, 279-289.
Crisp, M.D., Cook, L.G., 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol.Syst. 44, 303-324.
Daru, B.H., van der Bank, M., Maurin, O., Yessoufou, K., Schaefer, H., Slingsby, J.A., Davies, T.J., 2016. A novel phylogenetic regionalization of phytogeographical zones of southern Africa reveals their hidden evolutionary affinities. J. Biogeogr. 43, 155-166.
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W., Mouquet, N., 2010.Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity:the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030-1040.
Diniz-Filho, J.A.F., Loyola, R.D., Raia, P., Mooers, A.O., Bini, L.M., 2013. Darwinian shortfalls in biodiversity conservation. Trends Ecol. Evol. 28, 689-695.
Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555.
Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10.
Faith, D.P., 2008. Threatened species and the potential loss of phylogenetic diversity:conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461-1470.
Forest, F., Grenyer, R., Rouget, M., Davies, T.J., Cowling, R.M., Faith, D.P., Balmford, A., Manning, J.C., Proches, S., Van Der Bank, M., Reeves, G., Hedderson, T.A.J., Savolainen, V., 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757-760.
Fraterrigo, J.M., Wagner, S., Warren, R.J., 2014. Local-scale biotic interactions embedded in macroscale climate drivers suggest Eltonian noise hypothesis distribution patterns for an invasive grass. Ecol. Lett. 17, 1447-1454.
Gonzalez-Orozco, C.E., Pollock, L.J., Thornhill, A.H., Mishler, B.D., Knerr, N., Laffan, S.W., Miller, J.T., Rosauer, D.F., Faith, D.P., Nipperess, D.A., Kujala, H., Linke, S., Butt, N., Külheim, C., Crisp, M.D., Gruber, B., 2016. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110-1114.
Graham, C.H., Fine, P.V.A., 2008. Phylogenetic beta diversity:linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265-1277.
Heenan, P.B., Millar, T.R., Smissen, R.D., McGlone, M.S., Wilton, A.D., 2017. Phylogenetic measures of neo-and paleo-endemism in the indigenous vascular flora of the New Zealand archipelago. Aust. Syst. Bot. 30, 124-133.
Kembel, S.W., Hubbell, S.P., 2006. The phylogenetic structure of a Neotropical forest tree community. Ecology 87, S86-S99.
Kier, G., Kreft, H., Lee, T.M., Jetz, W., Ibisch, P.L., Nowicki, C., Mutke, J., Barthlott, W., 2009. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. U.S.A. 106, 9322-9327.
Klak, C., Reeves, G., Hedderson, T., 2004. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427, 63-65.
Kraft, N.J.B., Godoy, O., Levine, J.M., 2015. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. U.S.A. 112, 797-802.
Kreft, H., Jetz, W., 2010. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 37, 2029-2053.
Latham, R.E., Ricklefs, R.E., 1993. Global patterns of tree species richness in moist forest:energy-diversity theory does not account for variation in species richness. Oikos 67, 325-333.
Li, R., Dao, Z.L., Ji, Y.H., Li, H., 2007. A floristic study on the seed plants of the northern Gaoligong mountains in western Yunnan, China. Acta Bot. Yunnanica 29, 601-615.
Li, R., Kraft, N.J.B., Yang, J., Wang, Y.H., 2015b. A phylogenetically informed delineation of floristic regions within a biodiversity hotspot in Yunnan, China. Sci.Rep. 5, 9396.
Li, R., Kraft, N.J.B., Yu, H.Y., Li, H., 2015a. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia. Conserv. Biol. 29, 1552-1562.
Li, X.H., Zhu, X.X., Niu, Y., Sun, H., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. J. Systemat. Evol. 52, 280-288.
Li, X.W., Li, J., 1997. The Tanaka-Kaiyong line-an important floristic line for the study of the flora of East Asia. Ann. Missouri Bot. Gard. 84, 888-892.
Linder, H.P., 2014. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38.
Lopez-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S., Ge, S., 2011. Centres of plant endemism in China:places for survival or for speciation? J. Biogeogr. 38, 1267-1280.
Lu, L.M., Mao, L.F., Yang, T., Ye, J.F., Liu, B., Li, H.L., Sun, M., Miller, J.T., Mathews, S., Hu, H.H., Niu, Y.T., Peng, D.X., Chen, Y.H., Smith, S.A., Chen, M., Xiang, K.L., Le, C.T., Dang, V.C., Lu, A.M., Soltis, P.S., Soltis, D.E., Li, J.H., Chen, Z.D., 2018.Evolutionary history of the angiosperm flora of China. Nature 554, 234-238.
Lyashevska, O., Farnsworth, K.D., 2012. How many dimensions of biodiversity do we need? Ecol. Indicat. 18, 485-492.
Mace, G.M., Purvis, A., 2008. Evolutionary biology and practical conservation:bridging a widening gap. Mol. Ecol. 17, 9-19.
Mackey, B.G., Berry, S.L., Brown, T., 2008. Reconciling approaches to biogeographic regionalization:a systematic and generic framework examined with a case study of the Australian continent. J. Biogeogr. 35, 213-229.
Mishler, B.D., Knerr, N., Gonz alez-Orozco, C.E., Thornhill, A.H., Laffan, S.W., Miller, J.T., 2014. Phylogenetic measures of biodiversity and neo-and paleoendemism in Australian Acacia. Nat. Commun. 5, 4473.
Mittelbach, G.G., Schemske, D.W., 2015. Ecological and evolutionary perspectives on community assembly. Trends Ecol. Evol. 30, 241-247.
Morin, N.R., Whetstone, R.D., Wilken, D., Tomlinson, K.L., 1989. Floristics for the 21st Century. Missouri Botanical Garden, St. Louis.
Moritz, C., 2002. Strategies to protect biological diversity and the evolutionary process that sustain it. Syst. Biol. 51, 238-254.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000.Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.P., 2001. Terrestrial ecoregions of the world:a new map of life on earth. Bioscience 51, 933-938.
Pennington, R.T., Richardson, J.E., Lavin, M., 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol. 172, 605-616.
Pillon, Y., 2012. Time and tempo of diversification in the flora of New Caledonia. Bot.J. Linnean Soc. 170, 288-298.
Qian, H., Jin, Y., Ricklefs, R.E., 2017a. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proc. Natl. Acad. Sci. U.S.A. 114, 11452-11457.
Qian, H., Jin, Y., Ricklefs, R.E., 2017b. Patterns of phylogenetic relatedness of angiosperm woody plants across biomes and life-history stages. J. Biogeogr. 44, 1383-1392.
Qian, H., Sandel, B., 2017a. Phylogenetic relatedness of native and exotic plants along climate gradients in California, USA. Divers. Distrib. 23, 1323-1333.
Qian, H., Sandel, B., 2017b. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Global Ecol.Biogeogr. 26, 1258-1269.
Qian, H., Swenson, N.G., Zhang, J.L., 2013b. Phylogenetic beta diversity of angiosperms in North America. Global Ecol. Biogeogr. 22, 1152-1161.
Qian, H., Zhang, Y.J., Zhang, J., Wang, X.L., 2013a. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Global Ecol. Biogeogr. 22, 1183-1191.
Richardson, J.E., Pennington, R.T., Pennington, T.D., Hollingsworth, P.M., 2001. Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science 293, 2242-2245.
Ricklefs, R.E., 1987. Community diversity:relative roles of local and regional processes. Science 235, 167-171.
Ricklefs, R.E., 2006. Evolutionary diversification and the origin of the diversityenvironment relationship. Ecology 87, S3-S13.
Ricklefs, R.E., 2007. History and diversity:explorations at the intersection of ecology and evolution. Am. Nat 170, S56-S70.
Scherson, R.A., Thornhill, A.H., Urbina-Casanova, R., Freyman, W.A., Pliscoff, P.A., Mishler, B.D., 2017. Spatial phylogenetics of the vascular flora of Chile. Mol.Phylogenet. Evol. 112, 88-95.
Schweiger, O., Klotz, S., Durka, W., Kuhn, I., 2008. A comparative test of phylogenetic diversity indices. Oecologia 157, 485-495.
Slik, J.W.F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S., Aguirre, N., Ahumada, J., Aiba, S.I., Alves, L.F., et al., 2018. Phylogenetic classification of the world's tropical forests. Proc. Natl. Acad. Sci. U.S.A. 115, 1837-1842.
Strauss, S.Y., Webb, C.O., Salamin, N., 2006. Exotic taxa less related to native species are more invasive. Proc. Natl. Acad. Sci. U.S.A. 103, 5841-5845.
Swenson, N.G., 2011a. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am. J. Bot. 98, 472-480.
Swenson, N.G., 2011b. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity communities. PLoS One 6, e21264.
Swenson, N.G., 2013. The assembly of tropical tree communities-the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36, 264-276.
Swenson, N.G., Umana, M.N., 2014. Phylo~floristics:an example from the lesser antilles. J. Plant Ecol. 7, 166-175.
Takhtajan, A., 1986. Floristic Regions of the World. University of California Press, Berkeley.
Thornhill, A.H., Baldwin, B.G., Freyman, W.A., Nosratinia, S., Kling, M.M., MoruetaHolme, N., Madsen, T.P., Ackerly, D.D., Mishler, B.D., 2017. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96.
Thornhill, A.H., Mishler, B.D., Knerr, N.J., Gonzalez-Orozco, C.E., Costion, C.M., Crayn, D.M., Laffan, S.W., Miller, J.T., 2016. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. 43, 2085-2098.
Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., Araujo, M.B., 2011.Consequences of climate change on the tree of life in Europe. Nature 470, 531-534.
Tucker, C.M., Cadotte, M.W., 2013. Unifying measures of biodiversity:understanding when richness and phylogenetic diversity should be congruent. Divers. Distrib. 19, 845-854.
Tucker, C.M., Cadotte, M.W., Davies, T.J., Rebelo, A.G., 2012. Incorporating geographical and evolutionary rarity into conservation prioritization. Conserv.Biol. 26, 593-601.
Verboom, G.A., Archibald, J.K., Bakker, F.T., Bellstedt, D.U., Conrad, F., Dreyer, L.L., Forest, F., Galley, C., Goldblatt, P., Henning, J.F., Mummenhoff, K., Linder, H.P., Muasya, A.M., Oberlander, K.C., Savolainen, V., Snijmanm, D.A., van der Niet, T., Nowell, T.L., 2009. Origin and diversification of the Greater Cape flora:ancient species repository, hot-bed of recent radiation, or both? Mol. Phylogenet. Evol. 51, 44-53.
Wang, H., Harrison, S.P., Prentice, I.C., Yang, Y., Bai, F., Togashi, H.F., Wang, M., Zhou, S., Ni, J., 2018. The China Plant Trait Database:toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500.
Wang, H.S., 1992. Floristic Geography. Science Press, Beijing.
Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities:an example for rain forest trees. Am. Nat. 156, 145-155.
Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom:software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098-2100.
Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475-505.
Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639-644.
Winter, M., Devictor, V., Schweiger, O., 2013. Phylogenetic diversity and nature conservation:where are we? Trends Ecol. Evol. 28, 199-204.
Wu, Z.Y., 1965. On the tropical affinities of Chinese flora. Chin. Sci. Bull. 1, 25-33.
Wu, Z.Y., 1979. The regionalization of Chinese flora. Acta Bot. Yunnanica 1, 1-22.
Wu, Z.Y., 1983. On the significance of Pacific intercontinental discontinuity. Ann.Missouri Bot. Gard. 70, 577-590.
Wu, Z.Y., 1991. Areal-types of Chinese genera of seed plants. Acta Bot. Yunnanica(IV), 1-139.
Wu, Z.Y., Sun, H., Zhou, Z.K., Li, D.Z., Peng, H., 2010. Floristics of Seed Plants from China. Science Press, Beijing.
Wu, Z.Y., Sun, H., Zhou, Z.K., Peng, H., Li, D.Z., 2005. Origin and differentiation of endemism in the flora of China. Acta Bot. Yunnanica 27, 577-604.
Wu, Z.Y., Zhou, Z.K., Li, D.Z., Peng, H., Sun, H., 2003. The areal-types of the world families of seed plants. Acta Bot. Yunnanica 25, 245-257.
Wu, Z.Y., Zhou, Z.K., Sun, H., Li, D.Z., Peng, H., 2006. The Areal-types of Seed Plants and Their Origin and Differentiation. Yunnan Science and Technology Press, Kunming.
Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451.
Zhang, D.C., Ye, J.X., Sun, H., 2016. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan plateau, south-western China. J. Biogeogr. 42, 2465-2476.

本刊中的类似文章
1. BASKIN Carol C1 , 2 , BASKIN Jerry M1 .Advances in Understanding Seed Dormancy at the Whole-seed Level: An Ecological , Biogeographical and Phylogenetic Perspective[J]. 植物多样性, 2008,30(03): 279-294
2. 陈俊秋1 , 2 , 李 朗1 , 2 , 李 捷1 , 李锡文3 .樟科润楠属植物ITS 序列贝叶斯分析及其系统学意义[J]. 植物多样性, 2009,31(02): 117-126
3. Wedén Christina1, Larsson Sonny2 , Burman Robert1 , Backlund Anders1 .The Edible Truffle Choiromyces venosus and Its Use in Sweden[J]. 植物多样性, 2009,31(S16): 94-96
4. Chiranjibi Pattanaik1, C. Sudhakar Reddy2, P. Manikya Reddy3.The Medicinal Flora of Sambalpur District, Orissa, India[J]. 植物多样性, 2010,32(6): 554-560
5. 骆洋1、2、5, 何延彪3, 李德铢1、2, 王雨华3、4, 伊廷双2, 王红1、2.中国植物志、Flora of China和维管植物新系统中科的比较[J]. 植物多样性, 2012,34(3): 231-238
6. 杨湘云, 蔡杰, 张挺, 杜燕.野生植物种质资源的保存利用与iFlora[J]. 植物多样性, 2012,34(6): 539-545
7. 李德铢1、2, 杨红梅1、2、3, 张玉霄1、2.《中国植物志》(英文版)竹亚科青篱竹属和新小竹属的修订[J]. 植物多样性, 2013,35(5): 605-612
8. 杭悦宇, 孙小芹, 李密密.关于iFlora核心数据建设中的一些思考[J]. 植物多样性, 2013,35(6): 701-705
9. 杜燕, 张挺, 蔡杰, 杨湘云.iFlora中的种子形态学信息[J]. 植物多样性, 2013,35(6): 774-778
10. 李拓径, 王雨华.iFlora beta版移动平台软件研制[J]. 植物多样性, 2013,35(6): 784-790
11. 李艳春, 吴刚, 杨祝良.我国云南食用牛肝菌的DNA条形码研究[J]. 植物多样性, 2013,35(6): 725-732
12. 方涛, 曾春霞, 杨俊波**, 李德铢.馆藏植物标本与iFlora[J]. 植物多样性, 2013,35(6): 687-692
13. 刘珉璐1、2, 郁文彬1, 王红1.植物物种的快速鉴定与iFlora: DNA条形码在马先蒿属中的应用[J]. 植物多样性, 2013,35(6): 707-714
14. 方伟, 刘恩德.植物物种、模式产地种群调查与iFlora[J]. 植物多样性, 2013,35(6): 682-686
15. 王凡红1、2、3, 李德铢1、2, 薛春迎1、2, 卢金梅1、2.石松类和蕨类植物的主要分类系统的科属比较[J]. 植物多样性, 2013,35(6): 791-809
16. 唐敏1, 伊廷双2, 王欣1, 谭美华1, 周欣1.Metabarcoding技术在植物鉴定和多样性研究中的应用[J]. 植物多样性, 2013,35(6): 769-773
17.Bang Feng, Zhuliang Yang.Studies on diversity of higher fungi in Yunnan, southwestern China: A review[J]. 植物多样性, 2018,40(04): 165-171

文章评论

Copyright by 植物多样性