植物多样性 2018, 40(04) 196-208 DOI:   10.1016/j.pld.2018.06.003  ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(9766KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Orchid
Abiotic environments
Photosynthesis
Morphology
Mycorrhiza
本文作者相关文章
PubMed
Physiological diversity of orchids
Shibao Zhanga, Yingjie Yanga,b, Jiawei Lia,b, Jiao Qina, Wei Zhanga, Wei Huanga, Hong Hua
a Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
摘要

The Orchidaceae is a diverse and wide spread family of flowering plants that are of great value in ornamental, medical, conservation, and evolutionary research. The broad diversity in morphology, growth form, life history, and habitat mean that the members of Orchidaceae exhibit various physiological properties. Epiphytic orchids are often characterized by succulent leaves with thick cell walls, cuticles, and sunken stomata, whereas terrestrial orchids possess rhizomes, corms, or tubers. Most orchids have a long juvenile period, slow growth rate, and low photosynthetic capacity. This reduced photosynthetic potential can be largely explained by CO2 diffusional conductance and leaf internal structure. The amount of light required for plant survival depends upon nutritional mode, growth form, and habitat. Most orchids can adapt to their light environments through morphological and physiological adjustments but are sensitive to sudden changes in irradiance. Orchids that originate from warm regions are susceptible to chilling temperatures, whereas alpine members are vulnerable to high temperatures. For epiphytic orchids, rapid water uptake by the velamen radicum, water storage in their pseudobulbs and leaves, slow water loss, and Crassulacean Acid Metabolism contribute to plant-water balance and tolerance to drought stress. The presence of the velamen radicum and mycorrhizal fungi may compensate for the lack of root hairs, helping with quick absorbance of nutrients from the atmosphere. Under cultivation conditions, the form and concentration of nitrogen affect orchid growth and flowering. However, the limitations of nitrogen and phosphorous on epiphytic orchids in the wild, which require these plants to depend on mycorrhizal fungi for nutrients throughout the entire life cycle, are not clearly understood. Because they lack endosperm, seed germination depends upon obtaining nutrients via mycorrhizal fungi. Adult plants of some autotrophic orchids also gain carbon, nitrogen, phosphorus, and other elements from their mycorrhizal partners. Future studies should examine the mechanisms that determine slow growth and flower induction, the physiological causes of variations in flowering behavior and floral lifespan, the effects of nutrients and atmospheric-nitrogen deposition, and practical applications of mycorrhizal fungi in orchid cultivation.

关键词 Orchid   Abiotic environments   Photosynthesis   Morphology   Mycorrhiza  
Physiological diversity of orchids
Shibao Zhanga, Yingjie Yanga,b, Jiawei Lia,b, Jiao Qina, Wei Zhanga, Wei Huanga, Hong Hua
a Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:

The Orchidaceae is a diverse and wide spread family of flowering plants that are of great value in ornamental, medical, conservation, and evolutionary research. The broad diversity in morphology, growth form, life history, and habitat mean that the members of Orchidaceae exhibit various physiological properties. Epiphytic orchids are often characterized by succulent leaves with thick cell walls, cuticles, and sunken stomata, whereas terrestrial orchids possess rhizomes, corms, or tubers. Most orchids have a long juvenile period, slow growth rate, and low photosynthetic capacity. This reduced photosynthetic potential can be largely explained by CO2 diffusional conductance and leaf internal structure. The amount of light required for plant survival depends upon nutritional mode, growth form, and habitat. Most orchids can adapt to their light environments through morphological and physiological adjustments but are sensitive to sudden changes in irradiance. Orchids that originate from warm regions are susceptible to chilling temperatures, whereas alpine members are vulnerable to high temperatures. For epiphytic orchids, rapid water uptake by the velamen radicum, water storage in their pseudobulbs and leaves, slow water loss, and Crassulacean Acid Metabolism contribute to plant-water balance and tolerance to drought stress. The presence of the velamen radicum and mycorrhizal fungi may compensate for the lack of root hairs, helping with quick absorbance of nutrients from the atmosphere. Under cultivation conditions, the form and concentration of nitrogen affect orchid growth and flowering. However, the limitations of nitrogen and phosphorous on epiphytic orchids in the wild, which require these plants to depend on mycorrhizal fungi for nutrients throughout the entire life cycle, are not clearly understood. Because they lack endosperm, seed germination depends upon obtaining nutrients via mycorrhizal fungi. Adult plants of some autotrophic orchids also gain carbon, nitrogen, phosphorus, and other elements from their mycorrhizal partners. Future studies should examine the mechanisms that determine slow growth and flower induction, the physiological causes of variations in flowering behavior and floral lifespan, the effects of nutrients and atmospheric-nitrogen deposition, and practical applications of mycorrhizal fungi in orchid cultivation.

Keywords: Orchid   Abiotic environments   Photosynthesis   Morphology   Mycorrhiza  
收稿日期 2018-03-27 修回日期 2018-06-20 网络版发布日期  
DOI: 10.1016/j.pld.2018.06.003
基金项目:

This work is financially supported by the National Natural Science Foundation of China (31670342, 31370362) and the Natural Science Foundation of Yunnan Province (2018FA016).

通讯作者: Shibao Zhang
作者简介:
作者Email: sbzhang@mail.kib.ac.cn

参考文献:

Allen, J., 2002. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell 110, 273-276.
Amancio, S., Stulen, I., 2004. Nitrogen Acquisition and Assimilation in Higher Plants. ^ Kluwer Academic Publishers, Dordrecht.
Ando, T., Ogawa, M., 1987. Photosynthesis of leaf blades in Laelia anceps Lindl. is influenced by irradiation of pseudobulb. Photosynthetica 21, 588-590.
Arditti, J., 1992. Fundamentals of Orchid Biology. John Wiley & Sons, New York.
Arditti, J., Pridgeon, A.M., 1997. Orchid Biology:Reviews and Perspectives VⅡ. Kluwer Academic Publishers, Dordrecht.
Asada, K., 1999. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Plant Physiol. Plant Mol. Biol. 50, 601-639.
Barrett, C.F., Freudenstein, J.V., Li, J., et al., 2014. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol. Biol. Evol. 31, 3095-3112.
Benzing, D.H., 1990. Vascular Epiphytes:General Biology and Related Biota. Cambridge University Press, Cambridge UK.
Bichsel, R.G., Starman, T.W., Wang, Y.T., 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the Nobile dendrobium as a potted orchid. Hortscience 43, 328-332.
Björkman, E., 1960. Monotropa hypopitys L.e an epiparasite on tree roots. Physiol. Plantarum 13, 308-327.
Blanchard, M.G., 1993. Effects of Temperature on Growth and Flowering of Two Phalaenopsis and Two Odontioda Orchid Hybrids. Master of Science thesis. Michigan State University, East Lansing, MI, USA.
Cai, J., Liu, X., Vanneste, K., et al., 2014. The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65-72.
Caldwell, M.M., Pearcy, R.W., 1994. Exploitation of Environmental Heterogeneity by Plants. Academic Press, San Diego.
Cameron, D.D., Leake, J.R., Read, D.J., 2006. Mutualistic mycorrhiza in orchids:evidence from plantefungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 171, 405-416.
Cameron, D.D., Preiss, K., Gebauer, G., et al., 2009. The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol. 183, 358-364.
Carriqui, M., Cabrera, M., Conesa, M.A., et al., 2015. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ. 38, 448-460.
Chang, W., Zhang, S.B., Li, S.Y., et al., 2011. Ecophysiological significance of leaf traits in Cypripedium and Paphiopedilum. Physiol. Plantarum 141, 30-39.
Chase, M.W., 2005. Classification of Orchidaceae in the age of DNA data. Curtis's Bot. Mag. 22, 2-7.
Chen, S.C., Luo, Y.B., 2003. Advances in some plant groups in China 1. A retrospect and prospect of orchidology in China. Acta Bot. Sin. 45 (Suppl. l.), 2-20.
Chen, W.S., Liu, H.Y., Liu, Z.H., et al., 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol. Plantarum 90, 391-395.
Christenhusz, M.J.M., Byng, J.W., 2016. The number of known plant species in the world and its annual increase. Phytotaxa 261, 201-217.
Colmer, T.D., Bloom, A.J., 1998. A comparison of NH4+ and NO3- net fluxes along roots of rice and maize. Plant Cell Environ. 21, 240-246.
Cribb, P., Butterfield, I., 1999. The Genus Pleione. Royal Botanic Gardens, Kew.
Dearnaley, J.D., Cameron, D.D., 2017. Nitrogen transport in the orchid mycorrhizal symbiosis-further evidence for a mutualistic association. New Phytol. 213, 10-12.
Díaz-Alvarez, E.A., Lindig-Cisneros, R., de la Barrera, E., 2015. Responses to simu-lated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa. Peer J 3, e1021.
Díaz-Alvarez, E.A., Reyes-García, C., de la Barrera, E., 2016. A δ15N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico. J. Plant Res. 129, 863-872.
Dycus, A.M., Knudson, L., 1957. The role of the velamen of the aerial roots of orchids. Bot. Gaz. 119, 78-87.
Edwards, G.E., Walker, D.A., 1983. C3, C4:Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis. Blackwell Scientific Publication, London.
Fay, M.F., Chase, M.W., 2009. Orchid biology:from Linnaeus via Darwin to the 21st century. Ann. Bot. 104, 359-364.
Gebauer, G., Meyer, M., 2003. 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 160, 209-223.
Givnish, T.J., Spalink, D., Ames, M., et al., 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. R. Soc. B 282, 1814.
Gonneau, C., Jersakova, J., de Tredern, E., et al., 2014. Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. J. Ecol. 102, 1183-1194.
Grassi, G., Magnani, F., 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28, 834-849.
Gravendeel, B., Smithson, A., Slik, F.J.W., et al., 2004. Epiphytism and pollinator specialization:drivers for orchid diversity. Philos. Trans. R. Soc. B 359, 1523-1535.
Guan, Z.J., Zhang, S.B., Guan, K.Y., et al., 2011. Leaf anatomical structures of Paphiopedilum and Cypripedium and their adaptive significance. J. Plant Res. 124, 289-298.
He, J., Norhafis, H., Qin, L., 2013. Responses of green leaves and green pseudobulbs of CAM orchid Cattleya laeliocattleya Aloha Case to drought stress. J. Bot. Article ID 710539.
Hew, C.S., Lim, L.Y., Low, C.M., 1993. Nitrogen uptake by tropical orchids. Environ. Exp. Bot. 33, 273-281.
Hew, C.S., Koh, K.T., Khoo, G.H., 1998. Pattern of photoassimilate portioning in pseudobulbous and rhizomatous terrestrial orchids. Environ. Exp. Bot. 40, 93-104.
Hew, C.S., Yong, J.W.H., 2004. The Physiology of Tropical Orchids in Relation to the Industry, second ed. World Scientific Publishing, Singapore.
Hock, B., 2012. Fungal Associations. Springer, Berlin, Heidelberg.
Hocking, C.G., Anderson, J.W., 1986. Survey of pyruvate, phosphate dikinase activity of plants in relation to the C3, C4 and CAM mechanisms of CO2 assimilation. Phytochemistry 25, 1537-1543.
Huang, J.L., Hu, H., 2001. Seed germination requirements of Cypripedium flavum in axenic culture. Acta Bot. Yunnanica 23, 105-108.
Huang, W., Zhang, S.B., Hu, H., 2015. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight. Front. Plant Sci. 6, 621.
Huang, W., Yang, Y.J., Hu, H., et al., 2016. Evidence for the role of cyclic electron flow in photoprotection for oxygen-evolving complex. J. Plant Physiol. 194, 54-60.
Huang, W., Quan, X., Zhang, S.B., et al., 2018. In vivo regulation of proton motive force during photosynthetic induction. Environ. Exp. Bot. 148, 109-116.
Hurskainen, S., Jäkäläniemi, A., Ramula, S., et al., 2017. Tree removal as a management strategy for the lady's slipper orchid, a flagship species for herb-rich forest conservation. For. Ecol. Manag. 406, 12-18.
Iersel, M.W.V., 2003. Short-term temperature change affects the carbon exchange characteristics and growth of four bedding plant species. J. Am. Soc. Hortic. Sci. 128, 100-106.
Ishii, H., Ohsugi, Y., 2011. Light acclimation potential and carry-over effects vary among three evergreen tree species with contrasting patterns of leaf emergence and maturation. Tree Physiol. 31, 819-830.
Islam, M.O., Islam, O.M., Matsui, S., et al., 1999. Effects of light qualify on seed germination and seedling growth of Cattleya orchids in vitro. J. Jpn. Soc. Hortic. Sci. 68, 1132-1138.
Jones, H.G., 1992. Plants and Microclimate, second ed. Cambridge University Press, New York.
Júnior, J.M., Rodrigues, M., De Castro, E.M., et al., 2013. Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea. Acta Sci. Agron. 35, 65-72.
Kako, S., Oono, H., Sakakibara, K., 1976. Studies on growth and flowering of Cymbidium. 5. Effects of temperature on growth of vegetative shoots and flower buds differentiation. Abstr. Jpn. Soc. Hort. Sci. Autumn Meet 236-237.
Kanazawa, A., Ostendorf, E., Kohzuma, K., 2017. Chloroplast ATP synthase modulation of the thylakoid proton motive force:implications for photosystem I and photosystem Ⅱ photoprotection. Front. Plant Sci. 8, 719.
Kerbauy, G.B., Takahashi, C.A., Lopez, A.M., et al., 2012. Crassulacean acid metabolism in epiphytic orchids:current knowledge, future perspectives. In:Najafpour, M.M. (Ed.), Applied Photosynthesis. InTech, Rijeka.
Kim, Y.J., Lee, H.J., Kim, K.S., 2011. Night interruption promotes vegetative growth and flowering of Cymbidium. Sci. Hortic. 130, 887-893.
Kim, Y.J., Yu, D.J., Rho, H., et al., 2015. Photosynthetic changes in Cymbidium orchids grown under different intensities of night interruption lighting. Sci. Hortic. 186, 124-128.
Kottke, I., Suarez, J.P., Herrera, P., et al., 2010. Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc. R. Soc. B 277, 1289-1298.
Kuang, M.L., Zhang, S.B., 2015. Physiological response to high light in Cymbidium tracyanum and C. sinense. Plant Divers. Res. 37, 55-62.
Kull, T., 1999. Cypripedium calceolus L. J. Ecol. 87, 913-924.
Law, R.D., Crafts-Brandner, S.J., Salvucci, M.E., 2001. Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta 214, 117-125.
Lee, H.B., An, S.K., Lee, S.Y., et al., 2017. Vegetative growth characteristics of Phalaenopsis and Doritaenopsis plants under different artificial lighting sources. Hortic. Sci. Technol. 35, 21-29.
Lee, N., Lin, G.M., 1984. Effect of temperature on growth and flowering of Phalaenopsis white hybrid. J. Chin. Soc. Hortic. Sci. 30, 223-231.
Li, J.W., Zhang, S.B., 2016. Differences in the responses of photosystems I and Ⅱ in Cymbidium sinense and C. tracyanum to long-term chilling stress. Front. Plant Sci. 6, 1097.
Li, J.W., Chen, X.D., Hu, X.Y., et al., 2018. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. Planta 247, 69-91.
Liu, Q., Chen, J., Corlett, R.T., et al., 2015. Orchid conservation in the biodiversity hotspot of southwestern China. Conserv. Biol. 29, 1563-1572.
Lopez, R.G., Runkle, E.S., 2005. Environmental physiology of growth and flowering of orchids. Hortscience 40, 1969-1973.
Lopez-Bucio, J., Cruz-Ramírez, A., Herrera-Estrella, L., 2003. The role of nutrient
availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280-287.
Lubinsky, P., Bory, S., Hernandez, J.H., et al., 2008. Origins and dispersal of cultivated vanilla (Vanilla planifolia Jacks.
[Orchidaceae]). Econ. Bot. 62, 127-138.
Luo, Y.B., Jia, J.S., Wang, C.L., 2003. A general review of the conservation status of Chinese orchids. Biodivers. Sci. 11, 70-77.
Luttge, U., 1989. Vascular Plants as Epiphytes:Evolution and Ecophysiology. Springer, Heidelberg.
Martos, F., Dulormne, M., Pailler, T., et al., 2009. Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol. 184, 668-681.
Mayor, J.R., Schuur, E.A.G., Henkel, T.W., 2009. Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol. Lett. 12, 171-183.
McKendrick, S.L., Leake, J.R., Read, D.J., 2000. Symbiotic germination and development of myco-heterotrophic plants in nature:transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol. 145, 539-548.
Merckx, V.S., 2013. Mycoheterotrophy:the Biology of Plants Living on Fungi. Springer, New York.
Mohammad, B.A., Hahn, E.J., Paek, K.Y., 2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Biochem. 43, 213-223.
Motomura, H., Ueno, O., Kagawa, A., et al., 2008. Carbon isotope ratios and the variation in the diurnal pattern of malate accumulation in aerial roots of CAM species of Phalaenopsis (Orchidaceae). Photosynthetica 46, 531-536.
Mou, Z.M., Yan, N., Li, S.Y., et al., 2012. Nitrogen requirements for vegetative growth, flowering, seed production, and ramet growth of Paphiopedilum armeniacum(Orchid). Hortscience 47, 585-588.
Ng, C.K.Y., Hew, C.S., 2000. Orchid pseudobulbs-‘false’ bulbs with a genuine importance in orchid growth and survival! Sci. Hortic. 83, 165-172.
Pan, R.C., Chen, J.X., 1994. Effects of nitrate-nitrogen and ammonium-nitrogen on growth and development in Cymbidium sinense. Acta Bot. Yunnanica 16, 285-290.
Pires, M.V., de Almeida, A.F., Abreu, P.P., et al., 2012. Does shading explain variation in morphophysiological traits of tropical epiphytic orchids grown in artificial conditions? Acta Physiol. Plant. 34, 2155-2164.
Preiss, K., Adam, I.K.U., Gebauer, G., 2010. Irradiance governs exploitation of fungi:fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc. R. Soc. B 277, 1333-1336.
Pridgeon, A.M., Stern, W.L., 1982. Vegetative anatomy of Myoxanthus (Orchidaceae). Selbyana 7, 55-63.
Ramírez, S.R., Gravendeel, B., Singer, R.B., et al., 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042-1045.
Rasmussen, H.N., Dixon, K.W., Jersakova, J., et al., 2015. Germination and seedling establishment in orchids:a complex of requirements. Ann. Bot. 116, 391-402.
Reich, A., Ewel, J.J., Nadkarni, N.M., et al., 2003. Nitrogen isotope ratios shift with plant size in tropical bromeliads. Oecologia 137, 587-590.
Rodrigues, M.A., Matiz, A., Cruz, A.B., et al., 2013. Spatial patterns of photosynthesis in thin-and thick-leaved epiphytic orchids:unravelling C3-CAM plasticity in an organ-compartmented way. Ann. Bot. 112, 17-29.
Rosa-Manzano, E., Andrade, J.L., García-Mendoza, E., et al., 2015. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. Planta 242, 1425-1438.
Rosa-Manzano, E., Andrade, J.L., Zotz, G., et al., 2017. Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests. Acta Oecol. 85, 25-32.
Sailo, N., Rai, D., De, L.C., 2014. Physiology of temperate and tropical orchids-an overview. Int. J. Sci. Res. 3, 3-7.
Sanford, W.W., Adanlawo, I., 1973. Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Bot. J. Linn. Soc. 66, 307-321.
Schmidt, G., Zotz, G., 2002. Inherently slow growth in two Caribbean epiphytic species:a demographic approach. J. Veg. Sci. 13, 527-534.
Selosse, M.A., Faccio, A., Scappaticci, G., et al., 2004. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb. Ecol. 47, 416-426.
Selosse, M.A., Richard, F., He, X.H., et al., 2006. Mycorrhizal networks:des liaisons dangereuses? Trends Ecol. Evol. 21, 621-628.
Sheehan, T.J., 1983. Recent advances in botany, propagation, and physiology of orchids. In:Janick, J. (Ed.), Horticultural Reviews, vol. 5. John Wiley & Sons, Inc., Hoboken.
Sheehan, T.J., McConnell, D.B., 1980. Mesophyll cell collapse of Phalaenopsis Bl. In:Proc. 9th World Orchid Conf., Bangkok, Thailand.
Shefferson, R.P., 2006. Survival costs of adult dormancy and the confounding influence of size in lady's slipper orchids, genus Cypripedium. Oikos 115, 253-262.
Silvera, K., Santiago, L.S., Winter, K., 2005. Distribution of crassulacean acid metabolism in orchids of Panama:evidence of selection for weak and strong modes. Funct. Plant Biol. 32, 397-407.
Silvera, K., Santiago, L.S., Cushman, J.C., et al., 2009. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol. 149, 1838-1847.
Sinclair, R., 1983. Water relations of tropical epiphytes Ⅱ. Performance during droughting. J. Exp. Bot. 34, 1664-1675.
Sinoda, K., Hara, M., Aoki, M., 1984. Growth and flowering control in Dendrobium. 4. Cold treatments and flowering. Abstr. Jpn. Soc. Hort. Sci. Spring Meet. 364-365.
Smith, S.E., Read, D.J., 1997. Mycorrhizal Symbiosis, second ed. Academic Press, San Diego.
Su, W.R., Chen, W.S., Koshioka, M., et al., 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 39, 45-50.
Terashima, I., Hanba, Y.T., Tholen, D., et al., 2011. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 155, 108-116.
Tikkanen, M., Aro, E.M., 2014. Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci. 19, 10-17.
Tikkanen, M., Mekala, N.R., Aro, E.M., 2014. Photosystem Ⅱ photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim. Biophys. Acta 1837, 210-215.
Treseder, K.K., Davidson, D.W., Ehleringer, J.R., 1995. Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375, 137-139.
Tsaia, C.F., Huang, C.L., Lind, Y.L., et al., 2011. The neuroprotective effects of an extract of Gastrodia elata. J. Ethnopharmacol. 138, 119-125.
Ventre-Lespiaucq, A.B., Delgado, J.A., Ospina-Calderon, N.H., et al., 2017. A tropical epiphytic orchid uses a low-light interception strategy in a spatially heterogeneous light environment. Biotropica 49, 318-327.
Wanek, W., Zotz, G., 2011. Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N:P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytol. 192, 462-470.
Wang, Y., Ma, Y., Dai, S., 2010. The molecular mechanism in regulation of flowering in ornamental plants. Chin. Bull. Bot. 45, 641-653.
Wang, Y.T., 1995. Phalaenopsis orchid light requirement during the induction of spiking. Hortscience 30, 59-61.
Wang, Y.T., Chang, Y.C.A., 2017. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis orchid-a review. HortTechnology 27, 44-149.
Waterman, R.J., Bidartondo, M.I., 2008. Deception above, deception below:linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 59, 1085-1096.
Weng, E.S., Hu, H., Li, S.Y., et al., 2002. Differentiation of flower bud of Cypripedium flavum. Acta Bot. Yunnanica 24, 222-228.
Werner, F.A., Gradstein, S.R., 2008. Seedling establishment of vascular epiphytes on isolated and enclosed forest trees in an Andean landscape, Ecuador. Biodivers. Conserv. 17, 3195-3207.
Winter, K., Wallace, B.J., Stocker, G.C., et al., 1983. Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57, 129-141.
Yang, S.J., Sun, M., Yang, Q.Y., et al., 2016. Two strategies by epiphytic orchids for maintaining water balance:thick cuticles in leaves and water storage in pseudobulbs. AoB Plants 8 plw046.
Yang, Y.J., Chang, W., Huang, W., et al., 2017. The effects of chilling-light stress on photosystems I and Ⅱ in three Paphiopedilum species. Bot. Stud. 58, 53.
Yang, Z.H., Huang, W., Yang, Q.Y., et al., 2018. Anatomical and diffusional determinants inside leaves explain the difference in photosynthetic capacity between Cypripedium and Paphiopedilum, Orchidaceae. Photosynth. Res. 136, 315-328.
Zhang, F.P., Zhang, J.J., Yan, Y., et al., 2015a. Variations in seed micromorphology of Paphiopedilum and Cypripedium (Cypripedioideae, Orchidaceae). Seed Sci. Res. 25, 395-401.
Zhang, F.P., Huang, J.L., Zhang, S.B., 2016. Trait evolution in the slipper orchid Paphiopedilum (Orchidaceae) in China. Plant Signal. Behav. 11, e1149668.
Zhang, S.B., Hu, H., Zhou, Z.K., et al., 2005. Photosynthetic performances of transplanted Cypripedium flavum plants. Bot. Bull. Acad. Sin. 46, 307-313.
Zhang, S.B., Hu, H., Xu, K., et al., 2007. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J. Plant Physiol. 164, 611-620.
Zhang, S.B., Guan, Z.J., Chang, W., et al., 2011. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy. Physiol. Plantarum 142, 118-127.
Zhang, S.B., Dai, Y., Hao, G.Y., et al., 2015b. Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species. Front. Plant Sci. 6, 260.
Zhang, S.B., Chen, W.Y., Huang, J.L., et al., 2015c. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS One 10, e0142621.
Zhang, W., Huang, W., Zhang, S.B., 2017. The study of a determinate growth orchid highlights the role of new leaf production in photosynthetic light acclimation. Plant Ecol. 218, 997-1008.
Zhang, Z.J., He, D.X., Niu, G.H., et al., 2014. Concomitant CAM and C3 photosynthetic pathways in Dendrobium officinale plants. J. Am. Soc. Hortic. Sci. 139, 290-298.
Zimmer, K., Hynson, N.A., Gebauer, G., et al., 2007. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol. 175, 166-175.
Zotz, G., 1999. What are backshoots good for? Seasonal changes in mineral, carbohydrate and water content of different organs of the epiphytic orchid, Dimerandra emarginata. Ann. Bot. 84, 791-798.
Zotz, G., Hietz, P., 2001. The physiological ecology of vascular epiphytes:current knowledge, open questions. J. Exp. Bot. 52, 2067-2078.
Zotz, G., Schultz, S., 2008. The vascular epiphytes of a lowland forest in Panamaspecies composition and spatial structure. Plant Ecol. 195, 131-141.
Zotz, G., Winkler, U., 2013. Aerial roots of epiphytic orchids:the velamen radicum and its role in water and nutrient uptake. Oecologia 171, 733-741.

本刊中的类似文章
1.Marija BEDALOV, Claude FAVARGER, Philippe KUPFER.NATURAL HYBRIDS AND BASIC CHROMOSOME NUMBER IN THE GENUS ARUM[J]. 植物多样性, 1998,20(10): 1-3
2.WANG ping-Li, Ll Heng.REPORT OF POLLEN MORPHOLOGY OF ARACEAE[J]. 植物多样性, 1998,20(10): 1-3
3. JONG Shung-Chang1, LIU Zi-Qiang2 .Legal Issues Surrounding the Genetic Resource Conservation and Use of Edible Ectomycorrhizal Mushrooms[J]. 植物多样性, 2009,31(S16): 103-109
4. Donnini D., Baciarelli Falini L. , Di Massimo G ., Benucci G . M . N ., Bencivenga M . .Mycorrhization: Tuber borchii Vittad . Competitivity with Respect to Other Species of Tuber[J]. 植物多样性, 2009,31(S16): 100-102
5. Hall Ian R. 1 , Zambonelli Alessandra2, Wang Yun3 .Potential Problems Associated with the Cultivation and International Trade in Edible Ectomycorrhizal Mushrooms[J]. 植物多样性, 2009,31(S16): 86-89
6. GENG Li-Ying1 , WANG Xiang-Hua1 , YU Fu-Qiang1 , DENG Xiao-Juan1 , 2 ,
SHI Xiao-Fei1 , 2 , XIE Xue-Dan1 , 2 , LIU Pei-Gui1 .Successful Mycorrhizal Synthesis of Tuber indicum with Two Indigenous Hosts and Their Recognition[J]. 植物多样性, 2009,31(S16): 29-36
7. Perez-Moreno J ., Martinez-Reyes M. , Lorenzana Fernandez A. ,
Carrasco Hernandez V. , Mendez-Neri M. .Social and Biotechnological Studies of Wild Edible Mushrooms in Mexico , with Emphasis in the Izta-Popo and Zoquiapan National Parks[J]. 植物多样性, 2009,31(S16): 55-61
8. Bruhn J.N., Pruett G.E. , Mihail J .D. .Progress Toward Truffle Cultivation in the Central USA[J]. 植物多样性, 2009,31(S16): 1-3
9. LIU Pei-Gui1, WANG Xiang-Hua1 , YU Fu-Qiang1 , CHEN Juan1 , 3 , TIAN Xiao-Fei1 , 4 DENG Xiao-Juan1 , 2 , XIE Xue-Dan1 , 2 , SHI Xiao-Fei1 , 2 .Fungous Kingdom: Yunnan of China and Her Ectomycorrhizal Macrofungal Species Diversity[J]. 植物多样性, 2009,31(S16): 15-20
10. DA Sa Ru-La , BAI Shu-Lan, SHAO Dong-Hua, HAN Sheng-Li .A Preliminary Report on the Larger Edible Ectomycorrhizal Mushrooms from Daqing Mountains of Inner Mongolia, China[J]. 植物多样性, 2009,31(S16): 10-14
11.Xue-Zhao Wang, Xiao-Lin Sui, Yan-Yan Liu, Lei Xiang, Ting Zhang, Juan-Juan Fu, Ai-Rong Li, Pei-Zhi Yang.N-P fertilization did not reduce AMF abundance or diversity but alter AMF composition in an alpine grassland infested by a root hemiparasitic plant[J]. 植物多样性, 2018,40(03): 117-126

文章评论

Copyright by 植物多样性