植物多样性 2018, 40(05) 232-237 DOI:   10.1016/j.pld.2018.07.004  ISSN: 2095-0845 CN: 53-1217/Q

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1924KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Burmannia disticha
Burmanniaceae
Plastome
Phylogenetic analysis
本文作者相关文章
PubMed
The first complete plastid genome of Burmannia disticha L. from the mycoheterotrophic monocot family Burmanniaceae
Liuqing Maa,c, Pengfei Maa, Dezhu Lia,b
a Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China;
b Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China;
c University of Chinese Academy of Sciences, Beijing, 100049, China
摘要

Burmanniaceae is one major group within the monocot order Dioscoreales that has not had its plastome sequenced. Members of Burmanniaceae are mostly achlorophyllous, although the genus Burmannia also includes autotrophs. Here, we report sequencing and analysis of the first Burmanniaceae plastid genome from Burmannia disticha L.. This plastome is 157,480 bp and was assembled as a circular sequence with the typical quadripartite structure of plant plastid genomes. This plastome has a regular number of potentially functional genes with a total of 111, including 78 protein coding genes, 4 ribosomal RNA (rRNA) genes, and 29 tRNA genes. The ratio of the total length of genic:intergenic DNA is 1.58:1, and the mean length of intergenic regions is 398 bp, the longest being 1918 bp. The overall GC content of the B. disticha plastome is 34.90%, and the IR regions in B. disticha are more GC rich (39.50%) than the LSC (32.30%) and SSC (28.80%) regions. Phylogenetic analysis of protein-coding sequences from plastomes of related species in the order Dioscoreales support a clade comprising Burmanniaceae and Dioscoreaceae. This phylogenetic placement is congruent with previous findings based on nuclear and mitochondrial evidence.

关键词 Burmannia disticha   Burmanniaceae   Plastome   Phylogenetic analysis  
The first complete plastid genome of Burmannia disticha L. from the mycoheterotrophic monocot family Burmanniaceae
Liuqing Maa,c, Pengfei Maa, Dezhu Lia,b
a Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China;
b Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China;
c University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:

Burmanniaceae is one major group within the monocot order Dioscoreales that has not had its plastome sequenced. Members of Burmanniaceae are mostly achlorophyllous, although the genus Burmannia also includes autotrophs. Here, we report sequencing and analysis of the first Burmanniaceae plastid genome from Burmannia disticha L.. This plastome is 157,480 bp and was assembled as a circular sequence with the typical quadripartite structure of plant plastid genomes. This plastome has a regular number of potentially functional genes with a total of 111, including 78 protein coding genes, 4 ribosomal RNA (rRNA) genes, and 29 tRNA genes. The ratio of the total length of genic:intergenic DNA is 1.58:1, and the mean length of intergenic regions is 398 bp, the longest being 1918 bp. The overall GC content of the B. disticha plastome is 34.90%, and the IR regions in B. disticha are more GC rich (39.50%) than the LSC (32.30%) and SSC (28.80%) regions. Phylogenetic analysis of protein-coding sequences from plastomes of related species in the order Dioscoreales support a clade comprising Burmanniaceae and Dioscoreaceae. This phylogenetic placement is congruent with previous findings based on nuclear and mitochondrial evidence.

Keywords: Burmannia disticha   Burmanniaceae   Plastome   Phylogenetic analysis  
收稿日期 2018-01-22 修回日期  网络版发布日期  
DOI: 10.1016/j.pld.2018.07.004
基金项目:

This study was supported by the Large-scale Scientific Facilities of the Chinese Academy of Sciences (Grant No:2017-LSFGBOWS-02) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2015321).

通讯作者: Dezhu Li
作者简介:
作者Email: dzl@mail.kib.ac.cn

参考文献:

Altschul, S.F., Gish, W., Miller, W., et al., 1990. A basic local alignment search tool. J. Mol. Biol. 215 (3), 403-410.
Angiosperm Phylogeny Group, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅱ. Bot. J. Linn. Soc. 141, 399-436.
Angiosperm Phylogeny Group, 1998. An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 4, 531-553.
Barrett, C.F., Davis, J.I., 2012. The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am. J. Bot. 99, 1513-1523.
Barrett, C.F., Freudenstein, J.V., Li, J., et al., 2014. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol. Biol. Evol. 31 (12), 3095-3112.
Bolin, J.F., Tennakoon, K.U., Majid, M.B.A., et al., 2017. Isotopic evidence of partial mycoheterotrophy in Burmannia coelestis (Burmanniaceae). Plant Spec. Biol. 32, 74-80.
Bodin, S.S., Kim, J.S., Kim, J.H., 2016. Phylogenetic inferences and the evolution of plastid DNA in Campynemataceae and the mycoheterotrophic Corsia dispar D.L Jones & B. Gray (Corsiaceae). Plant Mol. Biol. Rep. 34, 192-210.
Caddick, L.R., Rudall, P.J., Wilkin, P., et al., 2002a. Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot. J. Linn. Soc. 138, 123-144.
Caddick, L.R., Wilkin, P., Rudall, P.J., et al., 2002b. Yams reclassified:a recircumscription of Dioscoreaceae and Dioscoreales. Taxon 51, 103-114.
Davis, C.C., Xi, Z.X., Mathews, S., 2014. Plastid phylogenomics and green plant phylogeny:almost full circle but not quite there. BMC Biol. 12 (1), 11.
Davis, J.I., Stevenson, D.W., Petersen, G., et al., 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Biol. 29, 467-510.
Delannoy, E., Fujii, S., Francs-Small, C.D.C., et al., 2011. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol. Biol. Evol. 28, 2077-2086.
Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15.
Jonker, F., 1938. A Monograph of the Burmanniaceae, vol. 51. Meeded Bot. Mus. Herb. Rijks Univ. Utrecht, Utrecht, pp. 1-279.
Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12), 1647-1649.
Lam, V.K.Y., Merckx, V.S.F.T., Graham, S.W., 2016. A few-gene plastid phylogenetic framework for mycoheterotrophic monocots. Am. J. Bot. 103 (4), 692-708.
Lam, V.K.Y., Gomez, M.S., Graham, S.W., 2015. The highly reduced plastome of mycoheterotrophic Sciaphila (Triuridaceae) is colinear with its green relatives and is under strong purifying selection. Genome Biol. Evol. 7, 2220-2236.
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357-359.
Lim, G.S., Barrett, C.F., Pang, C.C., et al., 2016. Drastic reduction of plastome size in the mycoheterotrophic Thismia tentaculata relative to that of its autotrophic relative Tacca chantrieri. Am. J. Bot. 103, 1-9.
Liu, C., Shi, L.C., Zhu, Y.J., et al., 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 13, 715.
Logacheva, M.D., Schelkunov, M.I., Nuraliev, M.S., et al., 2014. The plastid genome of mycoheterotrophic monocot Petrosavia stellaris exhibits both gene losses and multiple rearrangements. Genome Biol. Evol. 6 (1), 238-246.
Logacheva, M.D., Schelkunov, M.I., Penin, A.A., 2011. Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol. Evol. 3, 1296-1303.
Lohse, M., Drechsel, O., Kahlau, S., et al., 2013. Organellar Genome DRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression datasets. Nucleic Acids Res. 41, 575-581.
Luo, R., Liu, B., Xie, Y., et al., 2012. SOAPdenovo2:an empirically improved memoryefficient short-read de novo assembler. Giga Sci. 1, 18.
Mennes, C.B., Lam, V.K.Y., Rudall, P.J., et al., 2015. Ancient Gondwana break-up explains the distribution of the mycoheterotrophic family Corsiaceae (Liliales). J. Biogeogr. 42 (6), 1123-1136.
Mennes, C.B., Smets, E.F., Moses, S.N., et al., 2013. New insights in the long-debated evolutionary history of Triuridaceae (Pandanales). Mol. Phylogenet. Evol. 69, 994-1004.
Merckx, V., Chatrou, L.W., Lemaire, B., et al., 2008. Diversification of myco-heterotrophic angiosperms:evidence from Burmanniaceae. BMC Evol. Biol. 8 (1), 178.
Merckx, V., Schols, P., Maas-Van, D.K.H., et al., 2006. Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am. J. Bot. 93 (11), 1684-1698.
Rai, H.S., O'Brien, H.E., Reeves, P.A., et al., 2003. Inference of higher-order relationships in the cycads from a large chloroplast data set. Mol. Phylogenet. Evol. 29, 350-359.
Ruhlman, T., Jansen, R.K., 2014. The plastid genomes of flowering plants. In:Maliga, P. (Ed.), Chloroplast Biotechnology. Humana Press, New York, pp. 33-38.
Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, 686-689.
Schelkunov, M.I., Shtratnikova, V.Y., Nuraliev, M.S., et al., 2015. Exploring the limits for reduction of plastid genomes:a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. Genome Biol. Evol. 7 (4), 1179-1191.
Soltis, D.E., Soltis, P.S., Chase, M.W., et al., 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133, 381-461.
Stamatakis, A., 2006. RAxML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.
Tamura, K., Dudley, J., Nei, M., et al., 2007. MEGA4:molecular evolutionary genetics analysis (mega) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.
Wang, R.J., Cheng, C.L., Chang, C.C., et al., 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 8, 36.
Wolfe, K.H., Morden, C.W., Palmer, J.D., 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. U. S. A. 89 (22), 10648-10652.
Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255.
Zhang, D.X., 2001. Phylogenetic reconstruction of Burmannia L. (Burmanniaceae):a preliminary study. Acta Phytotaxon. Sin. 39 (3), 203-223.
Zhang, D., Saunders, R.M.K., 2000. Systematics of the Burmannia coelestis complex(Burmanniaceae). Nord. J. Bot. 20, 385-394.

本刊中的类似文章
1.Huan-Lei Zhang, Jian-Jun Jin, Michael J. Moore, Ting-Shuang Yi, De-Zhu Li.Plastome characteristics of Cannabaceae[J]. 植物多样性, 2018,40(03): 127-137

文章评论

Copyright by 植物多样性