植物多样性 2017, 39(03) 123-129 DOI:   http://dx.doi.org/10.1016/j.pld.2017.05.006  ISSN: 2096-2703 CN: 53-1233

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(4202KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Brassica rapa var. rapa
Turnip
Sucrose transporter
SUC
本文作者相关文章
PubMed
Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa) sucrose transporter gene family
Yuanyuan Liu a, b, c, Xin Yin a, b, c, Ya Yang a, b, c, Chuntao Wang a, b, *, Yongping Yang a, b, **
a Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
b Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming
650201, China
c University of the Chinese Academy of Sciences, Beijing 100049, China
摘要: In higher plants, sugars (mainly sucrose) are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and development. Sucrose transporters, or sucrose carriers (SUCs), play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa var. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUC6.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative polymerase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.
关键词 Brassica rapa var. rapa   Turnip   Sucrose transporter   SUC  
Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa) sucrose transporter gene family
Yuanyuan Liu a, b, c, Xin Yin a, b, c, Ya Yang a, b, c, Chuntao Wang a, b, *, Yongping Yang a, b, **
a Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
b Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming
650201, China
c University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract: In higher plants, sugars (mainly sucrose) are produced by photosynthetically assimilated carbon in mesophyll cells of leaves and translocated to heterotrophic organs to ensure plant growth and development. Sucrose transporters, or sucrose carriers (SUCs), play an important role in the long-distance transportation of sucrose from source organs to sink organs, thereby affecting crop yield and quality. The identification, characterization, and molecular function analysis of sucrose transporter genes have been reported for monocot and dicot plants. However, no relevant study has been reported on sucrose transporter genes in Brassica rapa var. rapa, a cruciferous root crop used mainly as vegetables and fodder. We identified and cloned 12 sucrose transporter genes from turnips, named BrrSUC1.1 to BrrSUC6.2 according to the SUC gene sequences of B. rapa pekinensis. We constructed a phylogenetic tree and analyzed conserved motifs for all 12 sucrose transporter genes identified. Real-time quantitative polymerase chain reaction was conducted to understand the expression levels of SUC genes in different tissues and developmental phases of the turnip. These findings add to our understanding of the genetics and physiology of sugar transport during taproot formation in turnips.
Keywords: Brassica rapa var. rapa   Turnip   Sucrose transporter   SUC  
收稿日期 2017-03-01 修回日期  网络版发布日期 2017-05-30 
DOI: http://dx.doi.org/10.1016/j.pld.2017.05.006
基金项目:

Major Program of National Natural Science Foundation of China (31590820, 31590823)

通讯作者:
作者简介:
作者Email:

参考文献:
Aoki, N., Hirose, T., Scofield, G.N., Whitfeld, P.R., Furbank, R.T., 2003. The sucrose
transporter gene family in rice. Plant Cell Physiol 44, 223e232.
Aoki, N., Hirose, T., Takahashi, S., Ono, K., Ishimaru, K., Ohsugi, R., 1999. Molecular
cloning and expression analysis of a gene for a sucrose transporter maize (Zea
mays L.). Plant Cell Physiol 40, 1072e1078.
Bitterlich, M., Krugel, U., Boldt-Burisch, K., Franken, P., Kuhn, C., 2014. The sucrose
transporter SlSUT2 from tomato interacts with brassinosteroid functioning and
affects arbuscular mycorrhiza formation. Plant J. 78, 877e889.
Cheng, F., Sun, R.F., Hou, X.L., Zheng, H.K., Zhang, F.L., Zhang, Y.Y., Liu, B., Liang, J.L.,
Zhuang, M., Liu, Y.X., Liu, D.Y., Wang, X.B., Li, P.X., Liu, Y.M., Lin, K., Bucher, J.,
Zhang, N.W., Wang, Y., Wang, H., Deng, J., Liao, Y.C., Wei, K.Y., Zhang, X.M.,
Fu, L.X., Hu, Y.Y., Liu, J.S., Cai, C.C., Zhang, S.J., Zhang, S.F., Li, F., Zhang, H.,
Zhang, J.F., Guo, N., Liu, Z.Y., Liu, J., Sun, C., Ma, Y., Zhang, H.J., Cui, Y.,
Freeling, M.R., Borm, T., Bonnema, G., Wu, J., Wang, X.W., 2016. Subgenome
parallel selection is associated with morphotype diversification and convergent
crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 48,
1218e1224.
Chu, B., Chen, C., Li, J., Chen, X., Li, Y., Tang, W., Jin, L., Zhang, Y., 2017. Effects of
Tibetan turnip (Brassica rapa L.) on promoting hypoxia-tolerance in healthy
humans. J. Ethnopharmacol. 195, 246e254.
Gong, X., Liu, M.L., Zhang, L.J., Ruan, Y.Y., Ding, R., Ji, Y.Q., Zhang, N., Zhang, S.B.,
Farmer, J., Wang, C., 2015. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose
transporters, are required for abiotic stress tolerance in an ABA-dependent
pathway. Physiol. Plant. 153, 119e136.
Gottwald, J.R., Krysan, P.J., Young, J.C., Evert, R.F., Sussman, M.R., 2000. Genetic
evidence for the in planta role of phloem-specific plasma membrane sucrose
transporters. Proc. Natl. Acad. Sci. U. S. A. 97, 13979e13984.
Jian, H.J., Lu, K., Yang, B., Wang, T.Y., Zhang, L., Zhang, A.X., Wang, J., Liu, L.Z.,
Qu, C.M., Li, J.N., 2016. Genome-wide analysis and expression profiling of the
SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica
napus L.). Front. Plant Sci. 7.
Kuhn, C., Grof, C.P.L., 2010. Sucrose transporters of higher plants. Curr. Opin. Plant
Biol. 13, 287e298.
Lemoine, R., 2000. Sucrose transporters in plants: update on function and structure.
Biochim. Biophy. Acta 1465, 246e262.
Li, F.P., Wu, B.D., Qin, X.W., Yan, L., Hao, C.Y., Tan, L.H., Lai, J.X., 2014. Molecular
cloning and expression analysis of the sucrose transporter gene family from
Theobroma cacao L. Gene 546, 336e341.
Nagaharu, U., 1935. Genome analysis in Brassica with special reference to the
experimental formation of B. napus and peculiar mode of fertilization. Jpn. J.
Bot. 7, 389e452.
Ogawa, Y., Omata, Y., Nishio, K., Saito, Y., Yoshida, Y., Niki, E., 2007. Assessment of
antioxidative activity of extract from fermented grain food mixture using
chemical and cellular systems. Biofactors 31, 237e248.
Riesmeier, J.W., Hirner, B., Frommer, W.B., 1993. Potato sucrose transporter
expression in minor veins indicates a role in phloem loading. Plant Cell 5,
1591e1598.
Riesmeier, J.W., Willmitzer, L., Frommer, W.B., 1992. Isolation and characterization
of a sucrose carrier cDNA from spinach by functional expression in yeast. Embo
J. 11, 4705e4713.
Riesmeier, J.W., Willmitzer, L., Frommer,W.B., 1994. Evidence for an essential role of
the sucrose transporter in phloem loading and assimilate partitioning. Embo J.
13, 1e7.
Rolland, F., Baena-Gonzalez, E., Sheen, J., 2006. Sugar sensing and signaling in
plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675e709.
Sauer, N., Ludwig, A., Knoblauch, A., Rothe, P., Gahrtz, M., Klebl, F., 2004. AtSUC8 and
AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6
and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes.
Plant J. 40, 120e130.
Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative
C(T) method. Nat. Protoc. 3, 1101e1108.
Weise, A., Barker, L., Kuhn, C., Lalonde, S., Buschmann, H., Frommer,W.B.,Ward, J.M.,
2000. A new subfamily of sucrose transporters, SUT4, with low affinity/high
capacity localized in enucleate sieve elements of plants. Plant Cell 12,
1345e1355.
Xie, Y., Jiang, S., Su, D., Pi, N., Ma, C., Gao, P., 2010. Composition analysis and antihypoxia
activity of polysaccharide from Brassica rapa L. Int. J. Biol. Macromol.
47, 528e533.
本刊中的类似文章

文章评论

Copyright by 植物多样性