植物生态学报 ›› 2006, Vol. 30 ›› Issue (3): 522-533.DOI: 10.17521/cjpe.2006.0069
接受日期:
2005-09-23
出版日期:
2006-05-30
发布日期:
2006-05-30
作者简介:
E-mail: liuwy@xtb9.ac.cn
基金资助:
LIU Wen-Yao1,3(), MA Wen-Zhang1,2, YANG Li-Pan1,2
Accepted:
2005-09-23
Online:
2006-05-30
Published:
2006-05-30
摘要:
林冠附生植物及其枯死存留物是构成山地湿性森林生态系统中生物区系、结构和功能的重要组分。由于在林冠攀爬技术上的限制,过去对林冠附生植物在生态系统结构和功能过程中的作用未能引起足够的重视。近20年来,随着对林冠生物多样性及其在生态系统功能过程影响的认识和研究技术上的提高,对林冠附生生物的研究已逐步从个体水平转移到系统水平上。有关林冠附生植物多样性、生物量及其生态学效应已成为近年来国际上新兴研究领域——“林冠学”的研究热点之一。许多研究表明,林冠附生植物在生态系统水平上的交互作用比它们的解剖、形态和生理特征更为重要。国外大量的研究结果表明,林冠是一个适合于许多生物种类生存的场所,其数量比想象的更为丰富。在全球范围内估计有29 500余种附生植物,其中维管束附生植物的种类高达24 000种,约占总维管束植物种类的10%。林冠附生物的生物量在世界各地森林中存在较大的差异,其范围在105~44 000 kg·hm-2之间,其中在一些热带和温带天然老龄林中林冠附生物的生物量超过了宿主林木的叶生物量。林冠附生植物还具有较大的叶面积指数(LAI)。林冠附生物丰富的物种组成、较高的生物量、独特的生理形态特征以及它们分布于森林与大气相互作用的关键界面,使得它们在生态系统物种多样性形成及其维持机制、养分和水分循环、指示环境质量等方面具有重要的作用。林冠附生植物及其枯死残留物具有较强的能力吸收雨水和空气中的营养物质,在林冠层中形成一个潮湿的环境促进氮固定,林冠附生植物群落还能为生存于林冠的其它生物(如鸟类、哺乳动物、两栖动物、爬行动物和昆虫等)提供食物和栖息场所。林冠附生植物的生长发育与分布格局除与宿主有关外,还受到环境因素(气候、地形、微生境条件等)和人为干扰的影响。由于世界各地森林类型多样和环境条件各异,目前国际上有关附生物的研究仍十分活跃,建立了林冠研究网络,研究不同类型森林中附生植物及其枯死残留物的动态及其与群落特征、环境因子的数量关系,探讨、交流和发展有效的标准测量方法和技术是该领域研究的主要内容。国内对林冠附生植物生态学的研究刚刚起步,有待于今后加强该领域的研究。
刘文耀, 马文章, 杨礼攀. 林冠附生植物生态学研究进展. 植物生态学报, 2006, 30(3): 522-533. DOI: 10.17521/cjpe.2006.0069
LIU Wen-Yao, MA Wen-Zhang, YANG Li-Pan. ADVANCES IN ECOLOGICAL STUDIES ON EPIPHYTES IN FOREST CANOPIES. Chinese Journal of Plant Ecology, 2006, 30(3): 522-533. DOI: 10.17521/cjpe.2006.0069
[1] | Annasel VJ, Parthasarathy N (2001). Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity and Conservation, 10,317-329. |
[2] | Baker GM, Pinard AM (2001). Forest canopy research: sampling problems, and some solutions. Plant Ecology, 153,23-38. |
[3] | Barkman JJ (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. Van Gorcum, Assen, Netherlands. |
[4] | Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001). Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology, 152,145-156. |
[5] | Basset Y, Hammond PM, Barrios H, Holloway JD, Miller SE (2003a). Vertical stratification of arthropod assemblages. In: Basset Y, Kitching R, Miller S, Novotny V eds. Arthropods of Tropical Forests: Spatio-Temporal Dynamics and Resource Use in the Canopy. Cambridge University Press, Cambridge,17-27. |
[6] | Basset Y, Horlyck V, Wright SJ (2003b). Executive summary. In: Basset Y, Horlyck V, Wright SJ eds. Studying Forest Canopies from Above: the International Canopy Crane Network. Smithsonian Tropical Research Institute and UNEP, Panama,21-23. |
[7] | Basset Y, Horlyck V, Wright SJ (2003c). The conservation of forest canopies: policy and science. In: Basset Y, Horlyck V, Wright SJ eds. Studying Forest Canopies from Above: the International Canopy Crane Network. Smithsonian Tropical Research Institute and UNEP, Panama,37-54. |
[8] |
Benzing DH (1998). Vulnerabilities of tropical forest to climate change: the significance of resident epiphytes. Climatic Change, 39,519-540.
DOI URL |
[9] |
Berg T, Steinnes E (1997). Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Science of the Total Environment, 208,197-206.
DOI URL |
[10] | Brown DH (1982). Mineral nutrition. In: Smith AJE ed. Bryophyte Ecology. Chapman and Hall, London,383-444. |
[11] | Cao T (曹同), Guo SL (郭水良) (2000). A study on bryophytes diversity in the main ecosystem in Changbai Mountain. Chinese Biodiversity (生物多样性), 8,50-59. (in Chinese with English abstract) |
[12] |
Casta DP (1999). Epiphytic bryophyte diversity in primary and secondary lowland rainforests in Southeastern Brazil. The Bryologist, 102,320-326.
DOI URL |
[13] | Coxson DS (1991). Nutrient release from epiphytic bryophyte in tropical montane rain forest (Guadeloupe). Canadian Journal of Botany, 69,2122-2129. |
[14] | Coxson DS, Nadkarni NM (1995). Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In: Lowman MD, Nadkarni NM eds. Forest Canopy. Academic Press, San Diego,495-543. |
[15] | Edward PJ, Grubb PJ (1977). Studies of mineral cycling in a montane rain forest in New Guinea. I. The distribution of organic matter in the vegetation and soil. Journal of Ecology, 65,943-967. |
[16] | Esseen P, Renhorn K (1996). Epiphytic lichen biomass in managed and old growth boreal forests: effect of branch quality. Ecological Applications, 6,228-238. |
[17] | Esseen P, Renhorn K (1998). Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology, 12,1307-1317. |
[18] | Field TS, Dawson TE (1998). Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest . Ecology, 79,1448-1452. |
[19] | Freiberg M, Freiberg E (2000). Epiphyte diversity and biomass in the canopy of lowland and montane forest in Ecuador. Journal of Tropical Ecology, 16,673-688. |
[20] | Gentry AH, Dodson CH (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74,205-233. |
[21] | Gillis AM (1990). The new forestry: an ecosystem approach to land management. Biotropica, 40,558-562. |
[22] | Gombert S, Asta J, Seaward MRD (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment, 324,183-199. |
[23] | Guo SL (郭水良), Cao T (曹同) (2000a). Studies on community distributive patterns of epiphytic bryophytes in forest ecosystems in Changbai Mountain. Acta Phytoecologica Sinica (植物生态学报), 24,442-450. (in Chinese with English abstract) |
[24] | Guo SL (郭水良), Cao T (曹同) (2000b). Studies on relationship of epiphytic bryophytes and environmental factors in forest ecosystems in Changbai Mountain forests. Acta Ecologica Sinica (生态学报), 20,924-931. (in Chinese with English abstract) |
[25] | Hall JB (1978). Checklist of the vascular plants of Bia National Park and Bia game production reserve. In: Martin C ed. Management Plan for the Bia Wildlife Conservation Areas. Part I. Wildlife and National Parks Division, Ghana Forestry Commission. Final Report IUCN/WWF Project, 1251. |
[26] | Hammond PM, Stork NE, Brendell MJD (1997). Tree-crown beetles in context: a comparison of canopy and other ecotone assemblages in a lowland tropical forest in Sulawesi. In: Stork NE, Adis J, Didham R eds. Canopy Arthropods. Chapman & Hall, London,184-223. |
[27] | Hietz P, Wanek W, Popp M (1999). Stable isotopic composition of carbon and nitrogen, and nitrogen content in vascular epiphytes along an altitudinal transect. Plant, Cell and Environment, 22,1435-1443. |
[28] | Hietz-Seiferet U, Heitz P, Guevara S (1996). Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biological Conservation, 75,103-111. |
[29] | Høfstede RGM, Dickinson KJM, Mark AF (2001). Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-Podocarp temperate rain forest: tropical comparisons. Journal of Biogeography, 28,1033-1049. |
[30] | Høfstede RGM, Wolf J, Benzing DH (1993). Epiphytic biomass and nutrient status of a Colombian Upper Montane Rain Forest. Selbyana, 14,37-45. |
[31] | Hølscher D, Køhlera L, van Dijk AIJM, Bruijnzeel LA (2004). The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology, 292,308-322. |
[32] | Hopkin M (2005). Biodiversity and climate form focus of forest canopy plan. Nature, 436,452. |
[33] | Ibisch PL (1996). Neotropical Epiphyte Diversity—the Bolivian Example. Ph D dissertation, University of Bonn, Bonn, Alemania, Martina Galunder-Verlag,1-470. |
[34] | Jarvis A (2000). Measuring and modeling the impact of land-use change in tropical hillsides: the role of cloud interception to epiphytes. Advances in Environmental Monitoring and Modeling, 1,118-148. |
[35] | Jenik J (1973). Root systems of tropical trees. 8. Stilt-roots and allied adaptations. Preslia, 45,250-264. |
[36] | Knops JMH, Nash TH, Boucher VL, Schlesinger WH (1991). Mineral cycling and epiphytic lichens: implication at ecosystem level. Lichenologist, 23,309-321. |
[37] | Kreft H, Køster N, Küper W, Nieder J, Barthlott W (2004). Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography, 31,1463-1476. |
[38] | Kress WJ (1986). The systematic distribution of vascular epiphytes: an update. Selbyana, 9,2-22. |
[39] | Laube S, Zotz G (2003). Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology, 17,598-604. |
[40] | Leimbeck RM, Balslev H (2001). Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodiversity and Conservation, 10,1579-1593. |
[41] | Liu WY (刘文耀) (2000). The role of epiphytic material in nutrient cycling of forest ecosystem. Chinese Journal of Ecology (生态学杂志), 19,30-35. (in Chinese with English abstract) |
[42] | Liu WY, Fox JED, Xu ZF (2000). Leaf litter decomposition of canopy trees, bamboo and moss in a montane moist evergreen broad-leaved forest on Ailao Moutian, Yunnan, South-West China. Ecological Research, 15,435-447. |
[43] | Liu WY, Fox JED, Xu ZF (2002). Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane subtropical moist forest on Ailao Moutians in Yunnan, SW China. Journal of Tropical Ecology, 18,527-548. |
[44] | Loppi S, Putorti E, Signorini C, Fommei S, Pirintsos SA,de Dominicis V (1998). A retrospective study using epiphytic lichens as biomonitors of air quality:1980 and 1996 (Tuscany, central Italy). Acta Oecologia, 19,405-408. |
[45] | Lowman MD, Nadkarni NM (1995). Forest Canopy. Academic Press, San Diego. |
[46] | Lowman MD (2001). Plant in the forest canopy: some reflections on current research and future direction. Plant Ecology, 153,39-50. |
[47] | Lugo AE, Scatena F (1992). Epiphytes and climate change research in the Caribbean: a proposal. Selbyana, 13,123-130. |
[48] | Lyons B, Nadkarni MN, North PM (2000). Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest . Canadian Journal of Botanty, 78,957-968. |
[49] |
Mitchell RJ, Truscot AM, Leith ID, Cape JN, van Dijk N, Tang YS, Fowler D, Sutton MA (2005). A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. Journal of Ecology, 10,1-10.
URL PMID |
[50] |
Nadkarni NM (1981). Canopy roots: convergent evolution in rainforest nutrient cycles. Science, 214,1023-1024.
URL PMID |
[51] | Nadkarni NM (1984). Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 16,249-256. |
[52] | Nadkarni NM (1985). Biomass and nutrient capital of epiphyte in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington State . Canadian Journal of Botany, 62,2223-2228. |
[53] | Nadkarni NM, Matelson TJ (1989). Bird use of epiphyte resources in Neotropical trees. The Condor, 91,891-907. |
[54] | Nadkarni NM, Matelson TJ (1992). Biomass and nutrient dynamics of epiphyte litterfall in a neotropical cloud forest, Costa Rica. Biotropica, 24,24-30. |
[55] | Nadkarni NM (2001). Forest canopies plant diversity. Encyclopedia of Biodiversity, 3,27-40. |
[56] |
Nadkarni NM, Solano R (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131,580-586.
DOI URL PMID |
[57] | Nadkarni NM, Schaefer DA, Matelson TJ, Solano R (2004). Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management, 198,223-236. |
[58] | Nieder J, Zotz G (1998). Methods of analyzing the structure and dynamics of vascular epiphyte communities. Ecotropica, 4,33-39. |
[59] | Nieder J, Prosper J, Michaloud G (2001). Epiphytes and their contribution to canopy diversity. Plant Ecology, 153,51-63. |
[60] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Kørner C, Meinzer FC, Mitchell AW, Nakashiyuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301,183-186.
DOI URL PMID |
[61] | Økland RH (1994). Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. Journal of Vegetation Science, 5,127-138. |
[62] | Padmawathe R, Qureshi Q, Rawat GS (2004). Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya India. Biological Conservation, 119,81-92. |
[63] | Parker GG (1995). Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM eds. Forest Canopy. Academic Press, San Diego, 73-106. |
[64] | Peck JE, McCune B (1998). Commercial moss harvest in northwestern Oregon: biomass and accumulation of epiphytes. Biological Conservation, 86,299-305. |
[65] |
Pennisi E (2005). Sky-high experiments. Science, 309,1314-1315.
DOI URL PMID |
[66] | Pentecost A (1998). Some observation on the biomass and distribution of cryptogamic epiphytes in the upper montane forest of the Rwenzori Mountains, Uganda. Global Ecology and Biogeography Letters, 7,273-284. |
[67] | Perry DR (1978). A method of access into the crowns of emergent and canopy trees. Biotropica, 10,155-157. |
[68] | Pócs T (1980). The epiphytic biomass and its effect on the water balance of two rainforest types in the Ulugruru Mountains. Acta Botanica Academiae Scientiarum Hungaricae, 26,143-167. |
[69] | Pykala J (2003). Effects of new forestry practices on rare epiphytic macrolichens. Conservation Biology, 18,831-838. |
[70] | Rodgers DJ, Kitching RL (1998). Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography, 21,392-400. |
[71] | Romero C (1999). Reduced-impact logging effects on commercial non-vascular pendant epiphyte biomass in a tropical montane forest in Costa Rica. Forest Ecology and Management, 118,117-125. |
[72] | Silvola J, Aaltonen H (1984). Water content and photosynthesis in peat mosses Sphagnum fuscum and S. angustifolium. Annual Botany of Fennic, 21,1-6. |
[73] | Sloof JE (1993). Environmental Lichenology: Biomonitoring Trace-Element Air Pollution. Ph D dissertation, Delft University of Technology, Netherland. |
[74] | Songwe NC, Fasehun FE, Okali DU (1998). Litterfall and productivity in a tropical rain forest, Southern Bakundu Forest Reserve, Cameroon. Journal of Tropical Ecology, 4,25-37. |
[75] | Sorensen LL (2003). Stratification of spider fauna in a Tasmanian forest. In: Basset Y, Kitching R, Miller S, Novotny V eds. Arthropods of Tropical Forests: Spatio-temporal Dynamics and Resource Use in the Canopy. Cambridge University Press, Cambridge,92-101. |
[76] |
Stuntz S, Simon U, Zotz G (2002). Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology, 46,53-59.
URL PMID |
[77] |
Szczepaniak K, Biziuk M (2003). Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research, 93,221-230.
DOI URL PMID |
[78] | Tanner EVJ (1980). Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology, 68,573-588. |
[79] | Turner IM, Tan HTW, Wee YC, Ibrahim AB, Chew PT, Corlett RT (1994). A study of plant species extinction in Singapore: Lessons for the conservation of tropical biodiversity. Conservation Biology, 8,705-712. |
[80] | Vanderpoorten A, Engels P, Sotiaux A (2004). Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography, 27,567-576. |
[81] | Vellak K, Paal J (1999). Diversity of bryophyte vegetation in some forest types in Estonia: a comparison of old unmanaged and managed forests. Biodiversity and Conservation, 8,1595-1620. |
[82] | Veneklaas E (1991). Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. Journal of Tropical Ecology, 7,319-335. |
[83] | Vitousek PM, Sanford RL Jr (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17,137-167. |
[84] | Wang Q (汪庆), He SA (贺善安), Wu PC (吴鹏程) (1999). The role bryophytes in biodiversity. Chinese Biodiversity (生物多样性), 7,332-339. (in Chinese with English abstract) |
[85] |
Weathers KC (1999). The importance of cloud and fog in the maintenance of ecosystems. Trends in Ecology & Evolution, 14,214-215.
DOI URL PMID |
[86] | Wolf JHD (1993a). Ecology of Epiphytes and Epiphyte Communities in Montane Rain Forest, Colombia. Ph D dissertation, University of Amsterdam, Netherlands. |
[87] | Wolf JHD (1993b). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annual Missouri Botanic Gardens, 84,928-960. |
[88] | Wolf JHD (2003). Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography, 30,1689-1707. |
[89] | Wolf JHD (2005). The response of epiphytes to anthropogenic distribution of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management, 212,376-393. |
[90] | Xu HQ (徐海清), Liu WY (刘文耀) (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science (生物多样性), 13,137-147. (in Chinese with English abstract) |
[91] |
Zotz G, Hietz P (2001). The ecophysiology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 52,2067-2078.
DOI URL PMID |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[10] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[13] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[14] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[15] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19