植物多样性 2017, 39(05) 287-293 DOI:   10.1016/j.pld.2017.08.004  ISSN: 2096-2703 CN: 53-1233

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(777KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Echinochloa phyllopogon
Polymorphic
RAD sequencing
SNP
SSR
本文作者相关文章
PubMed
Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach
Guoqi Chena,b, Wei Zhanga,b, Jiapeng Fanga,b, Liyao Donga,b
a College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
b Key Laboratory of Integrated Pest Management on Crops in East China(Nanjing Agricultural University), Ministry of Agriculture, Nanjing 210095, China
摘要Echinochloa phyllopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for E. phyllopogon. RAD tags were generated from the genomic DNA of two E. phyllopogon plants, and sequenced to produce 5197.7 Mb and 5242.9 Mb high quality sequences, respectively. The GC content of E. phyllopogon was 45.8%, which is high for monocots. In total, 4710 putative SSRs were identified in 4132 contigs, which permitted the design of PCR primers for E. phyllopogon. Most repeat motifs among the SSRs identified were dinucleotide (>82%), and most of these SSRs were four motif-repeats (>75%). The most frequent motif was AT, accounting for 36.3%-37.2%, followed by AG and AC. In total, 78 putative polymorphic SSR loci were found. A total of 49,179 SNPs were discovered between the two samples of E. phyllopogon, 67.1% of which were transversions and 32.9% were transitions. We used eight SSRs to study the genetic diversity of four E. phyllopogon populations collected from rice fields in China and all eight loci tested were polymorphic.
关键词 Echinochloa phyllopogon   Polymorphic   RAD sequencing   SNP   SSR  
Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach
Guoqi Chena,b, Wei Zhanga,b, Jiapeng Fanga,b, Liyao Donga,b
a College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
b Key Laboratory of Integrated Pest Management on Crops in East China(Nanjing Agricultural University), Ministry of Agriculture, Nanjing 210095, China
Abstract: Echinochloa phyllopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for E. phyllopogon. RAD tags were generated from the genomic DNA of two E. phyllopogon plants, and sequenced to produce 5197.7 Mb and 5242.9 Mb high quality sequences, respectively. The GC content of E. phyllopogon was 45.8%, which is high for monocots. In total, 4710 putative SSRs were identified in 4132 contigs, which permitted the design of PCR primers for E. phyllopogon. Most repeat motifs among the SSRs identified were dinucleotide (>82%), and most of these SSRs were four motif-repeats (>75%). The most frequent motif was AT, accounting for 36.3%-37.2%, followed by AG and AC. In total, 78 putative polymorphic SSR loci were found. A total of 49,179 SNPs were discovered between the two samples of E. phyllopogon, 67.1% of which were transversions and 32.9% were transitions. We used eight SSRs to study the genetic diversity of four E. phyllopogon populations collected from rice fields in China and all eight loci tested were polymorphic.
Keywords: Echinochloa phyllopogon   Polymorphic   RAD sequencing   SNP   SSR  
收稿日期 2017-02-22 修回日期 2017-08-28 网络版发布日期  
DOI: 10.1016/j.pld.2017.08.004
基金项目:

This research was supported by China Postdoctoral Science Foundation (2015M571763) and the Special Fund for Agroscientific Research in the Public Interest of China (201303022).We thank Kui Wu and Zhi-hui Yan (Nanjing Agricultural University,China) for providing helps on plant cultivation.Thanks are also due to the reviewers and editors for their helpful comments and English polish on earlier drafts of the manuscript.

通讯作者: Liyao Dong,E-mail address:dly@njau.edu.cn
作者简介:
作者Email: dly@njau.edu.cn

参考文献:
Baird, N.A., Etter, P.D., Atwood, T.S., et al., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376.
Barchi, L., Lanteri, S., Portis, E., et al., 2011. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12.
Catchen, J.M., Amores, A., Hohenlohe, P., et al., 2011. Stacks: building and genotyping loci De Novo from short-read sequences. G3 Genes Genomes Genet. 1, 171-182.
Danquah, E.Y., Hanley, S.J., Brookes, R.C., et al., 2002. Isolation and characterization of microsatellites in Echinochloa (L.) Beauv. spp. Mol. Ecol. Notes 2, 54-56.
Flora of China, 2015. Available from: www.efloras.org.
Gupta, S.K., Baek, J., Carrasquilla-Garcia, N., et al., 2015. Genome-wide polymorphism detection in peanut using next-generation restriction-site-associated DNA (RAD) sequencing. Mol. Breed. 35.
Heap, I., 2015. The International Survey of Herbicide Resistant Weeds, 2015.Available from: www.weedscience.org.
Holm, L.G., Pancho, J.V., Herberger, J.P., 1979. A Geographical Atlas of World Weeds.John Wiley and Sons, New York.
Kaya, H.B., Demirci, M., Tanyolac, B., 2014. Genetic structure and diversity analysis revealed by AFLP on different Echinochloa spp. from northwest Turkey. Plant Syst. Evol. 300, 1337-1347.
Kruglyak, L., 1997. The use of a genetic map of biallelic markers in linkage studies.Nat. Genet. 17, 21-24.
Lee, J., Park, K.W., Lee, I.Y., et al., 2015. Simple sequence repeat analysis of genetic diversity among acetyl-CoA carboxylase inhibitor-resistant and -susceptible Echinochloa crus-galli and E. oryzicola populations in Korea. Weed Res. 55, 90-100.
Miller, M.R., Dunham, J.P., Amores, A., et al., 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240-248.
Meirmans, P.G., Van Tienderen, P.H., 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792-794.
Nozawa, S., Takahashi, M., Nakai, H., et al., 2006. Difference in SSR variations between japanese barnyard millet (Echinochloa esculenta) and its wild relative. E.crus-galli. Breed. Sci. 56, 335-340.
Okada, M., Hanson, B.D., Hembree, K.J., et al., 2013. Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evol. Appl. 6, 761-777.
Orjuela, J., Garavito, A., Bouniol, M., et al., 2010. A universal core genetic map for rice. Theor. Appl. Genet. 120, 563-572.
Osuna, M.D., Okada, M., Ahmad, R., et al., 2011. Genetic diversity and spread of thiobencarb resistant early watergrass (Echinochloa oryzoides) in California.Weed Sci. 59, 195-201.
Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchdan update. Bioinformatics 28, 2537-2539.
Raats, D., Frenkel, Z., Krugman, T., et al., 2013. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution.Genome Biol. 14, 19.
Rao, A.N., Johnson, D.E., Sivaprasad, B., et al., 2007. Weed management in directseeded rice. In: Donald, L.S. (Ed.), Advances in Agronomy. Academic Press, pp. 153-255.
Šmarda, P., Bures, P., Horova, L., et al., 2014. Ecological and evolutionary signi ficance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. U. S. A. 111, E4096-E4102.
Sun, J.T., Wang, M.M., Zhang, Y.K., et al., 2015. Evidence for high dispersal ability and mito-nuclear discordance in the small brown planthopper, Laodelphax striatellus. Sci. Rep. 5, 8045.
Tabacchi, M., Mantegazza, R., Spada, A., et al., 2006. Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields.Weed Sci. 54, 1086-1093.
Talukder, Z.I., Gong, L., Hulke, B.S., et al., 2014. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS One 9, e98628.
Teixeira, H., Rodríguez-Echeverría, S., Nabais, C., 2014. Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR.PLoS One 9, e88996.
Temnykh, S., DeClerck, G., Lukashova, A., et al., 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441-1452.
Vandepitte, K., Honnay, O., Mergeay, J., et al., 2013. SNP discovery using Paired-End RAD-tag sequencing on pooled genomic DNA of Sisymbrium austriacum (Brassicaceae). Mol. Ecol. Resour. 13, 269-275.
Vidotto, F., Tesio, F., Tabacchi, M., et al., 2007. Herbicide sensitivity of Echinochloa spp. accessions in Italian rice fields. Crop Prot. 26, 285-293.
Wang, Y., Yang, C., Jin, Q.J., et al., 2015. Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet. 16, 8.
Yamasue, Y., 2001. Strategy of Echinochloa oryzicola Vasing. for survival in flooded rice. Weed Biol. Manag. 1, 28-36.
Zhang, Q., Ma, B., Li, H., et al., 2012. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple.BMC Genomics 13.
Zhang, Y., Zalapa, J., Jakubowski, A., et al., 2011. Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139, 933-948.
本刊中的类似文章
1.Reyna Maya-García a, Santiago Arizaga b , Pablo Cuevas-Reyes a ,et al.,.

Landscape genetics reveals inbreeding and genetic bottlenecks in the extremely rare short-globose cacti Mammillaria pectinifera (Cactaceae) as a result of habitat fragmentation[J]. 植物多样性, 0,(): 13-19

2.肖龙骞 葛学军 龚 洵 郑思乡.贵州苏铁遗传多样性研究[J]. 植物多样性, 2003,25(06): 1-3
3.廖文芳 夏念和 邓云飞 郑庆衍.华木莲的遗传多样性研究[J]. 植物多样性, 2004,26(01): 1-3
4.索志立,张会金,张治明,陈富飞,陈富慧.紫斑牡丹与牡丹种间杂交后代的DNA分子证据[J]. 植物多样性, 2005,27(01): 42-48
5.张萍; 董玉芝; 魏岩; 胡成志.利用ISSR标记对新疆白梭梭居群的遗传多样性分析[J]. 植物多样性, 2006,28(04): 359-362
6.王祎玲1, 2 , 赵桂仿1 .七筋菇自然居群的遗传结构分析[J]. 植物多样性, 2007,29(03): 293-299
7.何 俊1 , 2 , 杨柏云1 , 陈少风1 , 高连明2 , 王 红2 .多叶重楼遗传多样性的ISSR 分析[J]. 植物多样性, 2007,29(04): 388-392
8.汪书丽1 , 2 , 李巧明1 .中国木棉居群的遗传多样性[J]. 植物多样性, 2007,29(05): 529-536
9.向振勇1 , 2 , 3 , 宋松泉2 , 王桂娟2 , 陈茂盛2 , 杨成源2 , 龙春林1 .云南南部不同种源地小桐子遗传多样性的ISSR 分析[J]. 植物多样性, 2007,29(06): 619-624
10.高 洁1 , 2 , 李巧明1 .羽叶金合欢的DNA 提取和SSR 引物筛选[J]. 植物多样性, 2008,30(01): 64-68
11.张德全1 , 2 , 杨永平1 .几种常用分子标记遗传多样性参数的统计分析[J]. 植物多样性, 2008,30(02): 159-167
12. 马佳梅1 , 2 , 殷寿华1 .西双版纳地区流苏石斛遗传多样性的ISSR 分析[J]. 植物多样性, 2009,31(1): 35-41
13. 蒋志敏, 陈玉霞, 包颖.黄河三角洲柽柳居群的遗传结构和遗传分化[J]. 植物多样性, 2011,33(4): 403-408
14. 杨春1、2, 刘爱忠1.小桐子EST-SSR分子标记的开发与种质遗传多样性分析[J]. 植物多样性, 2011,33(5): 529-534
15. 赵凯1、2, 王德元2, 张文娟2, 邵剑文2 .都支杜鹃遗传多样性的ISSR分析[J]. 植物多样性, 2013,35(5): 578-584
16. 金桂花, 陈斯云, 伊廷双, 张书东.苹果叶绿体基因组特征分析[J]. 植物多样性, 2014,36(04): 468-484
17. 徐玉仙, 张微微, 莫海波, 李春, 曹建国, 田代科.基于ESTSSR标记的莲属种质资源遗传多样性分析[J]. 植物多样性, 2015,37(05): 595-604
18. 余亚莹1, 邵高能1, 圣忠华1, 蒋汉伟2, 贺记外1, 孙园园2, 蔡怡聪1, 胡培松1**, 唐绍清1.国内外香稻资源遗传多样性研究[J]. 植物多样性, 2015,37(06): 871-880
19. 张荣1、2, 冯秀彦1、2, 龚洵1.七种菊科植物SSR标记在大黄橐吾和奇形橐吾杂交区类群中的通用性检测[J]. 植物多样性, 2015,37(4): 416-422
20.Reyna Maya-García a, Santiago Arizaga b, Pablo Cuevas-Reyes a, Juan Manuel Pe?al.Landscape genetics reveals inbreeding and genetic bottlenecks in the extremely rare short-globose cacti Mammillaria pectinifera (Cactaceae) as a result of habitat fragmentation[J]. 植物多样性, 2017,39(1): 13-19

文章评论

Copyright by 植物多样性