植物多样性 2017, 39(05) 300-307 DOI:   10.1016/j.pld.2017.05.007  ISSN: 2096-2703 CN: 53-1233

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
研究论文
扩展功能
本文信息
Supporting info
PDF(1950KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
Ricinus communis L.
Epigenetic diversity
Methylation-sensitive amplification
polymorphism
DNA methylation
本文作者相关文章
PubMed
Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean
Shan Hea,b, Wei Xua, Fei Lia, Yue Wanga, Aizhong Liua
a Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
摘要: Investigation of the relationships of phenotypic and epigenetic variations might be a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants. Castor bean (Ricinus communis L.), an important non-edible oilseed crop, is a mono-species genus plant in the family Euphorbiaceae. Since it displays rich phenotypic variations with low genetic diversity, castor bean is a good model to investigate the molecular basis of phenotypic and epigenetic variations. Cytosine DNA methylation represents a major molecular mechanism of epigenetic occurrence. In this study, epigenetic diversity of sixty landrace accessions collected worldwide was investigated using the methylationsensitive amplification polymorphism (MSAP) technique. Results showed that the epigenetic diversity (based on the polymorphism of DNA methylated loci) exhibited a medium variation (Ne=1.395, He=0.242, I=0.366) at the population level though the variation was great, ranging from 3.80% to 34.31% among accessions. Both population structure analysis and the phylogenetic construction (using the neighbor-joining criteria) revealed that the two main clades were identified, but they did not display a distinct geographic structure. After inspecting the location of polymorphic methylated loci on genome we identified that the polymorphic methylated loci occur widely in nuclear and organelle genomes. This study provides new data to understand phenotypic and epigenetic variations in castor bean.
关键词 Ricinus communis L.   Epigenetic diversity   Methylation-sensitive amplification   polymorphism   DNA methylation  
Intraspecific DNA methylation polymorphism in the non-edible oilseed plant castor bean
Shan Hea,b, Wei Xua, Fei Lia, Yue Wanga, Aizhong Liua
a Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Investigation of the relationships of phenotypic and epigenetic variations might be a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants. Castor bean (Ricinus communis L.), an important non-edible oilseed crop, is a mono-species genus plant in the family Euphorbiaceae. Since it displays rich phenotypic variations with low genetic diversity, castor bean is a good model to investigate the molecular basis of phenotypic and epigenetic variations. Cytosine DNA methylation represents a major molecular mechanism of epigenetic occurrence. In this study, epigenetic diversity of sixty landrace accessions collected worldwide was investigated using the methylationsensitive amplification polymorphism (MSAP) technique. Results showed that the epigenetic diversity (based on the polymorphism of DNA methylated loci) exhibited a medium variation (Ne=1.395, He=0.242, I=0.366) at the population level though the variation was great, ranging from 3.80% to 34.31% among accessions. Both population structure analysis and the phylogenetic construction (using the neighbor-joining criteria) revealed that the two main clades were identified, but they did not display a distinct geographic structure. After inspecting the location of polymorphic methylated loci on genome we identified that the polymorphic methylated loci occur widely in nuclear and organelle genomes. This study provides new data to understand phenotypic and epigenetic variations in castor bean.
Keywords: Ricinus communis L.   Epigenetic diversity   Methylation-sensitive amplification   polymorphism   DNA methylation  
收稿日期 2017-03-12 修回日期 2017-05-27 网络版发布日期  
DOI: 10.1016/j.pld.2017.05.007
基金项目:

This work was jointly supported by Chinese National Key Technology R & D Program (2015BAD15B02) and National Natural Science Foundation of China (31661143002 and 31501034).

通讯作者: Aizhong Liu,E-mail address:liuaizhong@mail.kib.ac.cn
作者简介:
作者Email: liuaizhong@mail.kib.ac.cn

参考文献:
Akpan, U.G., Jimoh, A., Mohammed, A.D., 2006. Extraction, characterization and modification of castor seed oil. Leonardo J. Sci. 5, 39417-39424.
Alexandrov, O.S., Karlov, G.I., 2016. Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.). Mol.Genet. Genomics 291, 775-787.
Allan, G., Williams, A., Rabinowicz, P.D., Chan, A.P., Ravel, J., Keim, P., 2008.Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Resour. Crop Evol. 55, 365-378.
Alsdurf, J.D., Ripley, T.J., Matzner, S.L., Siemens, D.H., 2013. Drought-induced transgenerational tradeoff between stress tolerance and defence: consequences for range limits? AoB Plants 5, plt038.
Avramidou, E.V., Doulis, A.G., Aravanopoulos, F.A., 2015. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene 562, 180-187.
Catalá, R., Sabater, B., Guéra, A., 1997. Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings.Plant Cell Physiol. 38, 1382-1388.
Cervera, M.T., Ruiz-García, L., Martínez-Zapater, J.M., 2003. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268, 832-833.
Chinnusamy, V., Zhu, J.K., 2009. Epigenetic regulation of stress responses in plants.Curr. Opin. Plant Biol. 12, 133.
Dai, L.F., Chen, Y.L., Luo, X.D., Wen, X.F., Cui, F.L., Zhang, F.T., Zhou, Y., Xie, J.K., 2015.Level and pattern of DNA methylation changes in rice cold tolerance introgression lines derived from Oryza rufipogon Griff. Euphytica 205, 73-83.
Das, O.P., Messing, J., 1994. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics 136, 1121-1141.
Dowen, R.H., Pelizzola, M., Schmitz, R.J., Lister, R., Dowen, J.M., Nery, J.R., Dixon, J.E., Ecker, J.R., 2012. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. U. S. A. 109, E2183.
Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611-2620.
Feng, S., Cokus, S.J., Zhang, X., Chen, P.Y., Bostick, M., Goll, M.G., Hetzel, J., Jain, J., Strauss, S.H., Halpern, M.E., 2010. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. U. S. A. 107, 8689.
Finnegan, E.J., Kovac, K.A., Matzke, M.A., Matzke, A.J.M., 2000. Plant DNA methyltransferases. Plant Mol. Biol. 43, 189-201.
Foster, J.T., Allan, G.J., Chan, A.P., Rabinowicz, P.D., Ravel, J., Jackson, P.J., Keim, P., 2010. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol. 10, 13.
Garg, R., Chevala, V.N., Shankar, R., Jain, M., 2015. Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci. Rep. 5.
Gruenbaum, Y., Navehmany, T., Cedar, H., Razin, A., 1981. Sequence specificity of methylation in higher plant DNA. Nature 292, 860-862.
Guéra, A., de Nova, P.G., Sabater, B., 2000. Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley:changes during photomorphogenesis of chloroplasts. Plant Cell Physiol. 41, 49-59.
Herman, J.J., Sultan, S.E., 2016. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. Biol. Sci. 283.
Herrera, C.M., Bazaga, P., 2010. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187, 867.
Hong, H.F., Wei, J., Li, T.C., Zheng, P.L., Ning, G., Yong, P.C., Yi, L., 2013. DNA methylation alterations of upland cotton (Gossypium hirsutum) in response to cold stress. Acta Physiol. Plant. 35, 2445-2453.
Hubisz, M.J., Falush, D., Stephens, M., Pritchard, J.K., 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol.Resour. 9, 1322-1332.
Kanchanaketu, T., Sangduen, N., Toojinda, T., Hongtrakul, V., 2012. Genetic diversity analysis of Jatropha curcas L. (Euphorbiaceae) based on methylation-sensitive amplification polymorphism. Genet. Mol. Res. 11, 944.
Keyte, A.L., Percifield, R., Liu, B., Wendel, J.F., 2006. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97, 444-450.
Kobayashi, H., Ngernprasirtsiri, J., Akazawa, T., 1990. Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts. EMBO J. 9, 307-313.
Lauria, M., Rupe, M., Guo, M., Kranz, E., Pirona, R., Viotti, A., Lund, G., 2004.Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16, 510-522.
Law, J.A., Jacobsen, S.E., 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204.
Lee, C., Itoh, T., Maeda, R., Suga, T., 1994. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22, 3640-3659.
Leutwiler, L.S., Hough-Evans, B.R., Meyerowitz, E.M., 1984. The DNA of Arabidopsis thaliana. Mol. Genet. Genomics 194, 15-23.
Liramedeiros, C.F., Parisod, C., Fernandes, R.A., Mata, C.S., Cardoso, M.A., Ferreira, P.C., 2010. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5, e10326.
Liu, J., He, Y., Amasino, R., Chen, X., 2004. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873-2878.
López, C.M.R., Wilkinson, M.J., 2010. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol. 186, 856.
Ma, K., Song, Y., Yang, X., Zhang, Z., Zhang, D., 2013. Variation in genomic methylation in natural populations of Chinese white poplar. PLoS ONE 8, e63977.
Marconi, G., Pace, R., Traini, A., Raggi, L., Lutts, S., Chiusano, M., Guiducci, M., Falcinelli, M., Benincasa, P., Albertini, E., 2013. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var.oleifera). PLoS ONE 8, e75597.
Ohta, N., Sato, N., Kawano, S., Kuroiwa, T., 1991. Methylation of DNA in the chloroplasts and amyloplasts of the pea, Pisum sativum. Plant Sci. 78, 33-42.
Okano, M., Bell, D.W., Haber, D.A., Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell 99, 247-257.
Portis, E., Acquadro, A., Comino, C., Lanteri, S., 2004. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylationsensitive amplification polymorphism (MSAP). Plant Sci. 166, 169-178.
Qiu, L., Yang, C., Bo, T., Yang, J.B., Liu, A., 2010. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biol. 10, 1-10.
Reyna-López, G.E., Simpson, J., Ruiz-Herrera, J., 1997. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Genet. Genomics 253, 703-710.
Rivarola, M., Foster, J.T., Chan, A.P., Williams, A.L., Rice, D.W., Liu, X., Melakeberhan, A., Creasy, H.H., Puiu, D., Rosovitz, M.J., 2011. Castor bean organelle genome sequencing and worldwide genetic diversity analysis. PLoS ONE 6, e21743.
Rod, P., Petere, S., 2006. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295.
Sáez-Laguna, E., Guevara, M.Á., Díaz, L.M., Sánchez-Gómez, D., Collada, C., Aranda, I., Cervera, M.T., 2014. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS ONE 9, e103145.
Salmon, A., Clotault, J., Jenczewski, E., Chable, V., Manzanaresdauleux, M.J., 2008.Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 174, 61-70.
Shan, X.H., Li, Y.D., Liu, X.M., Wu, Y., Zhang, M.Z., Guo, W.L., Liu, B., Yuan, Y.P., 2012.Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP. Genet.Mol. Res. 11, 2749-2759.
Sujatha, M., Reddy, T.P., Mahasi, M.J., 2008. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol. Adv. 26, 424-435.
Suzuki, M.M., Bird, A., 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465.
Takio, S., Satoh, Y., Satoh, T., 1994. Occurrence of DNA methylation in chloroplasts of the suspension cultured cells from a Liverwort, Marchantia paleacea var. diptera.J. Plant Physiol. 143, 173-177.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V.D., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M., 1995. AFLP: a new technique for DNA fingerprinting.Nucleic Acids Res. 23, 4407.
Walder, R.Y., Langtimm, C.J., Chatterjee, R., Walder, J.A., 1983. Cloning of the MspI modification enzyme. The site of modification and its effects on cleavage by MspI and HpaⅡ. J. Biol. Chem. 258, 1235-1241.
Wang, P., Gao, C., Bian, X., Zhao, S., Zhao, C., Xia, H., Song, H., Hou, L., Wan, S., Wang, X., 2016. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferase and demethylase families in wild and cultivated peanut. Front. Plant Sci. 7, 7.
Webster, G.L., 1994. Synopsis of the genera and suprageneric taxa of Euphorbiaceae.Ann. Missouri Bot. Gard. 81, 33.
Wolf, J., 2000. Oilseed crops (2nd edn), Edited by EA Weiss Blackwell Science, Oxford, 2000. J. Sci. Food Agric. 80, 1573.
Xiong, L.Z., Xu, C.G., Saghai Maroof, M.A., Zhang, Q., 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Genet. Genomics 261, 439.
Xu, M., Li, X., Korban, S.S., 2000. AFLP-Based detection of DNA methylation. Plant Mol. Biol. Rep. 18, 361-368.
Zhang, Y.Y., Fischer, M., Colot, V., Bossdorf, O., 2013. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 197, 314-322.
Zhang, B., Tieman, D.M., Jiao, C., Xu, Y., Chen, K., Fe, Z., Giovannoni, J.J., Klee, H.J., 2016. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 113, 12580.
Zhao, X., Chai, Y., Liu, B., 2007. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci. 172, 930-938.
Zhong, L., Xu, Y., Wang, J., 2009. DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr. J. Biotechnol. 8, 6201-6207.
本刊中的类似文章
1.Wei Zhou1, Haidong Li2,3, Zhikun Wu4, Spencer C.H. Barrett5, Dezhu Li 1, Hong Wa.Characterization of 24 microsatellite markers in Primula chungensis (Primulaceae), a distyloushomostylous species, using MiSeq sequencing[J]. 植物多样性, 2016,38(02): 110-113

文章评论

Copyright by 植物多样性