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EFFECTS OF WATER DEFICIT ON PHOTOCHEMICAL ACTIVITY AND EXCITA-
TION ENERGY DISSIPATION OF PHOTOSYNTHETIC APPARATUS IN COTTON
LEAVES DURING FLOWERING AND BOLL-SETTING STAGES
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Abstract Aims Cotton Gossypium hirsutum is a major crop in Xinjiang Province Northwest China. Be-
cause Xinjiang is characterized by deficiency of water resource and strong irradiance study of water deficit on
photoinhibition of cotton in this area is crucial not only for efficient irrigation but also for physiological explo-
ration of plant photo-protection strategy .
Methods We investigated the effects of water deficit on physiological characteristics of cotton in the field.
We measured diurnal variations of photon flux density PFD  leaf temperature Ty  pre-dawn maximal
photochemical efficiency of PSIl  F,/F,, PSIl photochemical efficiency ®psy;  electron transport rate
ETR  photochemical quenching ¢, and non-photochemical quenching NPQ  as well as chlorophyll
content and water potential of cotton leaves subjected to different water supplies.
Important findings Compared to control 70% —75% of field capacity  the diurnal variation of leaf inci-
dent PFD was similar and T, was higher with mild water deficit 55% — 60% of field capacity . The diur-
nal variation of leaf incident PFD with moderate water deficit 40% —45% of field capacity was similar be-
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fore 12:00 and then lower as a result of leaf wilting than in the control. Leaf temperature with moderate water
deficit was significantly higher than in the control during daytime. No significant effects were observed on pre-
dawn F,/F, all values were between 0.83 and 0.84. There were no differences in diurnal variations of
®@ps;p ETR and g, between mild water deficit and control. However NP(Q with mild water deficit was similar
before noon and then lower than the control. At 12:00 @ps;  ETR and g, with moderate water deficit were
significantly decreased and then recovered gradually to control values possibly due to the decreased leaf inci-
dent PFD resulting from temporary and passive leaf wilting. However NP(Q with moderate water deficit was
higher before 12:00 and similar at 14:00 but after that was lower than control. Water potential and chlorophyll
content decreased with water deficits but the Chl a/b ratio increased. All results showed that cotton leaves
could acclimate to water deficit through changing leaf orientation and chlorophyll content to regulate light energy
captured by leaves and changing electron transport rate and thermal dissipation ratio. We suggest that the risk of
photosynthetic apparatus damage by excessive excitation energy could be decreased greatly through passive move-
ment of cotton leaf wilting with moderate water deficit.
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