摘要点击排行
一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
选择: 显示/隐藏图片
1. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants
Yi Jin, Hong Qian
Plant Diversity    2022, 44 (04): 335-339.   DOI: 10.1016/j.pld.2022.05.005
摘要397)      PDF (682KB)(187)    收藏
An earlier version of V.PhyloMaker has been broadly used to generate phylogenetic trees of vascular plants for botanical, biogeographical and ecological studies. Here, we update and enlarge this package, which is now called 'V.PhyloMaker2'. With V.PhyloMaker2, one can generate a phylogenetic tree for vascular plants based on one of three different botanical nomenclature systems. V.PhyloMaker2 can generate phylogenies for very large species lists (the largest species list that we tested included 365,198 species). V.PhyloMaker2 generates phylogenies at a fast speed. We provide an example (including a sample species list and an R script to run it) in this paper to show how to use V.PhyloMaker2 to generate phylogenetic trees.
2. Orchid conservation in China from 2000 to 2020: Achievements and perspectives
Zhihua Zhou, Ronghong Shi, Yu Zhang, Xiaoke Xing, Xiaohua Jin
Plant Diversity    2021, 43 (05): 343-349.   DOI: 10.1016/j.pld.2021.06.003
摘要212)      PDF (385KB)(85)    收藏
We review achievements in the conservation of orchid diversity in China over the last 21 years. We provide updated information on orchid biodiversity and suggestions for orchid conservation in China. We outline national policies of biodiversity conservation, especially of orchid conservation, which provide general guidelines for orchid conservation in China. There are now approximately 1708 known species of Orchidaceae in 181 genera in China, including five new genera and 365 new species described over the last 21 years. The assessment of risk of extinction of all 1502 known native orchid species in China in 2013 indicated that 653 species were identified as threatened, 132 species were treated as data-deficient, and four species endemic to China were classified as extinct. Approximately 1100 species (ca. 65%) are protected in national nature reserves, and another ~66 species in provincial nature reserves. About 800 native orchid species have living collections in major botanical gardens. The pollination biology of 74 native orchid species and the genetic diversity and spatial genetic structure of 29 orchid species have been investigated at a local scale and/or across species distributions. The mycorrhizal fungal community composition has been investigated in many genera, such as Bletilla, Coelogyne, Cymbidium, Cypripedium, and Dendrobium. Approximately 292 species will be included in the list of national key protected wild plants this year. Two major tasks for near future include in situ conservation and monitoring population dynamics of endangered species.
3. Recent advances on phylogenomics of gymnosperms and a new classification
Yong Yang, David Kay Ferguson, Bing Liu, Kang-Shan Mao, Lian-Ming Gao, Shou-Zhou Zhang, Tao Wan, Keith Rushforth, Zhi-Xiang Zhang
Plant Diversity    2022, 44 (04): 340-350.   DOI: 10.1016/j.pld.2022.05.003
摘要184)      PDF (7637KB)(154)    收藏
Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.
4. Genome-wide analysis of the B3 transcription factors reveals that RcABI3/VP1 subfamily plays important roles in seed development and oil storage in castor bean (Ricinus communis)
Wen-Bo Wang, Tao Ao, Yan-Yu Zhang, Di Wu, Wei Xu, Bing Han, Ai-Zhong Liu
Plant Diversity    2022, 44 (02): 201-212.   DOI: 10.1016/j.pld.2021.06.008
摘要160)      PDF (15825KB)(35)    收藏
The B3 transcription factors (TFs) in plants play vital roles in numerous biological processes. Although B3 genes have been broadly identified in many plants, little is known about their potential functions in mediating seed development and material accumulation. Castor bean (Ricinus communis) is a non-edible oilseed crop considered an ideal model system for seed biology research. Here, we identified a total of 61 B3 genes in the castor bean genome, which can be classified into five subfamilies, including ABI3/VP1, HSI, ARF, RAV and REM. The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development, indicating that these genes may be associated with the accumulation of storage oils. Furthermore, through yeast one-hybrid and tobacco transient expression assays, we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2, which encodes an oil-body structural protein. This finding suggests that RcLEC2, as a seed-specific TF, may be involved in the regulation of storage materials accumulation. This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.
5. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species
Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li
Plant Diversity    2022, 44 (02): 181-190.   DOI: 10.1016/j.pld.2021.09.005
摘要158)      PDF (32144KB)(55)    收藏
Dryopteris sect. Diclisodon is a small section of ferns with about 12 species mainly distributed in East Asia. Here, we carried out morphological and phylogenetic analyses of this section. A new species from southwest China, D. gaoligongensis, is described and illustrated. Dryopteris gaoligongensis resembles D. indonesiana and D. sparsa, but differs by having a creeping rhizome and large 4-pinnate fronds. We also show that D. glabrior Ching & Z.Y. Liu is a distinct species; however, because it is a later homonym of D. glabrior Copel., it should be renamed D. renchangiana. We conclude that a species previously known as D. nitidula, also an illegitimate homonym, should be recognized with a new name, D. sinonepalensis. We resolve the phylogenetic position of D. yoroii as sister to other sampled species of D. sect. Diclisodon. Our phylogenetic analyses confirm the distinctiveness of D. gaoligongensis, D. renchangiana, and D. sinonepalensis. A key to species of D. sect. Diclisodon in China is provided.
6. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers
Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai
Plant Diversity    2021, 43 (04): 281-291.   DOI: 10.1016/j.pld.2021.04.004
摘要148)      PDF (15623KB)(53)    收藏
The wood sorrel family, Oxalidaceae, is mainly composed of annual or perennial herbs, a few shrubs, and trees distributed from temperate to tropical zones. Members of Oxalidaceae are of high medicinal, ornamental, and economic value. Despite the rich diversity and value of Oxalidaceae, few molecular markers or plastomes are available for phylogenetic analysis of the family. Here, we reported four new whole plastomes of Oxalidaceae and compared them with plastomes of three species in the family, as well as the plastome of Rourea microphylla in the closely related family Connaraceae. The eight plastomes ranged in length from 150,673 bp (Biophytum sensitivum) to 156,609 bp (R. microphylla). Genome annotations revealed a total of 129-131 genes, including 83-84 protein-coding genes, eight rRNA genes, 37 tRNA genes, and two to three pseudogenes. Comparative analyses showed that the plastomes of these species have minor variations at the gene level. The smaller plastomes of herbs B. sensitivum and three Oxalis species are associated with variations in IR region sizes, intergenic region variation, and gene or intron loss. We identified sequences with high variation that may serve as molecular markers in taxonomic studies of Oxalidaceae. The phylogenetic trees of selected superrosid representatives based on 76 protein-coding genes corroborated the Oxalidaceae position in Oxalidales and supported it as a sister to Connaraceae. Our research also supported the monophyly of the COM (Celastrales, Oxalidales, and Malpighiales) clade.
7. Distribution patterns and industry planning of commonly used traditional Chinese medicinal plants in China
Zhang-Jian Shan, Jian-Fei Ye, Da-Cheng Hao, Pei-Gen Xiao, Zhi-Duan Chen, An-Ming Lu
Plant Diversity    2022, 44 (03): 255-261.   DOI: 10.1016/j.pld.2021.11.003
摘要137)      PDF (3718KB)(39)    收藏
Medicinal plants are the primary material basis for disease prevention and treatment in traditional Chinese medicine (TCM). The conservation and sustainable utilization of these medicinal plants is critical for the development of the TCM industry. However, wild medicinal plant resources have sharply declined in recent decades. To ameliorate the shortage of medicinal plant resources, it is essential to explore the development potential of the TCM industry in different geographical regions. For this purpose, we examined the spatial distribution of commonly used medicinal plants in China, the number of Chinese medicinal material markets, and the number of TCM decoction piece enterprises. Specifically, multispecies superimposition analysis and Thiessen polygons were used to reveal the optimal range for planting bulk medicinal plants and the ideal regions for building Chinese medicinal material markets, respectively. Furthermore, we quantitatively analyzed mismatches between the spatial distribution of commonly used medicinal plant richness, Chinese medicinal material markets, and TCM decoction piece enterprises. We found that?the areas suitable for growing commonly used medicinal plants in China were mainly distributed in Hengduan Mountain, Nanling Mountain, Wuling Mountain, and Daba Mountain areas. The Thiessen polygon network based on Chinese medicinal material market localities showed there are currently fewer markets in southwestern, northwestern, and northeastern China than in central and southern China. TCM decoction piece enterprises are concentrated in a few provinces, such as Hebei and Jiangxi. We found that the distribution of commonly used medicinal plants, Chinese medicinal material markets and TCM decoction piece enterprises are mismatched in Henan, Shaanxi, Hunan, Hubei, Zhejiang, Fujian, Chongqing, and Xizang. We recommend strengthening development of the TCM industry in Henan, Hunan, Zhejiang, Shaanxi, Hubei, Chongqing, Fujian, and Xizang; building more Chinese medicinal material markets in southwestern, northwestern, and northeastern China; and establishing medicinal plant nurseries in resource-rich provinces to better protect and domesticate local medicinal plants.
8. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare
Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang
Plant Diversity    2022, 44 (05): 429-435.   DOI: 10.1016/j.pld.2022.01.005
摘要134)      PDF (477KB)(127)    收藏
Biodiversity loss during the Anthropocene is a serious ecological challenge. Pollinators are important vectors that provide multiple essential ecosystem services but are declining rapidly in this changing world. However, several studies have argued that a high abundance of managed bee pollinators, such as honeybees (Apis mellifera), may be sufficient to provide pollination services for crop productivity, and sociological studies indicate that the majority of farmers worldwide do not recognize the contribution of wild pollinator diversity to agricultural yield. Here, we review the importance of pollinator diversity in natural and agricultural ecosystems that may be thwarted by the increase in abundance of managed pollinators such as honeybees. We also emphasize the additional roles diverse pollinator communities play in environmental safety, culture, and aesthetics. Research indicates that in natural ecosystems, pollinator diversity enhances pollination during environmental and climatic perturbations, thus alleviating pollen limitation. In agricultural ecosystems, pollinator diversity increases the quality and quantity of crop yield. Furthermore, studies indicate that many pollinator groups are useful in monitoring environmental pollution, aid in pest and disease control, and provide cultural and aesthetic value. During the uncertainties that may accompany rapid environmental changes in the Anthropocene, the conservation of pollinator diversity must expand beyond bee conservation. Similarly, the value of pollinator diversity maintenance extends beyond the provision of pollination services. Accordingly, conservation of pollinator diversity requires an interdisciplinary approach with contributions from environmentalists, taxonomists, and social scientists, including artists, who can shape opinions and behavior.
9. Rhododendron kuomeianum (Ericaceae), a new species from northeastern Yunnan (China), based on morphological and genomic data
Yu-Hang Chang, Gang Yao, Jens Neilsen, De-Tuan Liu, Lu Zhang, Yong-Peng Ma
Plant Diversity    2021, 43 (04): 292-298.   DOI: 10.1016/j.pld.2021.04.003
摘要128)      PDF (6658KB)(85)    收藏
Rhododendron kuomeianum Y.H. Chang, J. Nielsen & Y.P. Ma, a new species of Rhododendron (Ericaceae) within subsect. Maddenia in sect. Rhododendron from Yiliang County, NE Yunnan, China, is described and illustrated. The new species is similar to R. valentinianum, but it can be easily distinguished by its sparse scales on the abaxial surface of the leaf blade, fewer flowers per inflorescence and white corolla with pale red margins. There are also differences in the widths of calyx lobes, leaf blade shape and indumentum characteristics of the petiole between the new species and Rhododendron linearilobum. We confirmed that R. kuomeianum is a new species closely related to R. valentinianum and R. changii with phylogenomic studies of 10 species within this subsection based on restriction site-associated DNA sequencing (RAD-seq) data. These phylogenomic analyses also clarified additional taxonomic problems in this subsection previously raised by morphological analysis. Our findings make a strong case for using next-generation sequencing to explore phylogenetic relationships and identify new species, especially in plants groups with complicated taxonomic problems.
10. Phytochrome B regulates jasmonic acid-mediated defense response against Botrytis cinerea in Arabidopsis
Shengyuan Xiang, Songguo Wu, Yifen Jing, Ligang Chen, Diqiu Yu
Plant Diversity    2022, 44 (01): 109-115.   DOI: 10.1016/j.pld.2021.01.007
摘要124)      PDF (3010KB)(29)    收藏
The phytochrome B mediated light signaling integrates with various phytohormone signalings to control plant immune response. However, it is still unclear whether phyB-mediated light signaling has an effect on the biosynthesis of jasmonate during plant defense response against Botrytis cinerea. In this study, we demonstrated that phyB-mediated light signaling has a role in this process. Initially, we confirmed that phyb plants were obviously less resistant to B. cinerea while phyB overexpressing plants showed significantly enhanced resistance. We also found that the expression of numerous JA biosynthesis genes was promoted upon treatment with red or white light when compared to that of darkness, and that this promotion is dependent on phyB. Consistent with the gene expression results, phyb plants accumulated reduced pool of JA-Ile, indicating that phyB-mediated light signaling indeed increased JA biosynthesis. Further genetic analysis showed that light-mediated JAZ9 degradation and phyB-enhanced resistance were dependent on the receptor COI1, and that pif1/3/4/5 (pifq) can largely rescue the severe symptom of phyb. Taken together, our study demonstrates that phyB may participate in plant defense against B. cinerea through the modulation of the biosynthesis of JA.
11. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?
Hong Qian, Yi Jin
Plant Diversity    2021, 43 (04): 255-263.   DOI: 10.1016/j.pld.2020.11.005
摘要123)      PDF (3104KB)(77)    收藏
Phylogenies are essential to studies investigating the effect of evolutionary history on assembly of species in ecological communities and geographical and ecological patterns of phylogenetic structure of species assemblages. Because phylogenies well resolved at the species level are lacking for many major groups of organisms such as vascular plants, researchers often generate a species-level phylogenies using a phylogeny well resolved at the genus level as a backbone and attaching species to their respective genera in the phylogeny as polytomies or by using a megaphylogeny well resolved at the genus level as a backbone and adding additional species to the megaphylogeny as polytomies of their respective genera. However, whether the result of a study using species-level phylogenies generated in these ways is robust, compared to that based on phylogenies fully resolved at the species level, has not been assessed. Here, we use 1093 angiosperm tree assemblages (each in a 110×110km quadrat) in North America as a model system to address this question, by examining six commonly used metrics of phylogenetic structure (phylogenetic diversity and phylogenetic relatedness) and six climate variables commonly used in ecology. Our results showed that (1) the scores of phylogenetic metrics derived from species-level phylogenies resolved at the genus level with species being attached to their respective genera as polytomies are very strongly or perfectly correlated to those derived from a phylogeny fully resolved at the species level (the mean of correlation coefficients is 0.973), and (2) the relationships between the scores of phylogenetic metrics and climate variables are consistent between the two sets of analyses based on the two types of phylogeny. Our study suggests that using species-level phylogenies resolved at the genus level with species being attached to their genera as polytomies is appropriate in studies exploring patterns of phylogenetic structure of species in ecological communities across geographical and ecological gradients.
12. New contributions to Goodyerinae and Dendrobiinae (Orchidaceae) in the flora of China
Ji-Dong Ya, Ting Zhang, Tirtha Raj Pandey, Cheng Liu, Zhou-Dong Han, De-Ping Ye, De-Ming He, Qiang Liu, Lan Yang, Li Huang, Rong-Zhen Zhang, Hong Jiang, Jie Cai
Plant Diversity    2021, 43 (05): 362-378.   DOI: 10.1016/j.pld.2021.05.006
摘要121)      PDF (32162KB)(115)    收藏
Eight new species from China, Cheirostylis chuxiongensis, C. yei, Myrmechis lingulata, M. longii, Bulbophyllum ximaense, B. xizangense, B. retusum and B. pulcherissimum, are described and illustrated. Cheirostylis chuxiongensis differs from C. thailandica by having 5-9 irregular and papillae-like calli on each side in the sac of the lip, epichile with entire lobes, petals narrowly obliquely obovate and an apex that is not recurved. Cheirostylis yei is easily distinguished from its relatives similar by having a long stem, pubescent ovary and sepals, epichile lobes with irregular and undulate margins, a subquadrate callus without teeth in the saccate hypochile. Myrmechis lingulata differs from M. chinensis by having a simple and lanceolate to ligulate lip, glabrous bracts and ovary, oblique and narrowly ovate petals. Myrmechis longii differs from M. pumila by having white-veined leaves, oblong-lanceolate epichile lobes, and viscidium attached to the middle of the caudicle. Bulbophyllum ximaense is easily distinguished from its relatives similar by having distant pseudobulbs, shorter scape, an inflorescence with 9-16 orange-red flowers, shorter lateral sepals with a long acuminate apex, incurved and tubular apical margins, a papillate lip disk and triangular-subulate stelidia. Bulbophyllum xizangense is easily distinguished from its relatives similar by having narrow lanceolate leaves, shorter inflorescence with 1-3 greenish-yellow flowers, falcate-ovoid lateral sepals, a lip with small lateral lobes and 3 keels at the base. Bulbophyllum retusum differs from B. spathulatum by having shorter inflorescence, peduncles with 2 tubular sheaths, dorsal sepals with a retuse apex, lateral sepals with lower edges that are connate to each other and free and divergent toward the apex, obovate petals with an acute or slightly retuse apex. Bulbophyllum pulcherissimum differs from B. lopalanthum by its 5-veined dorsal sepal, ovate-lanceolate lateral sepals, obliquely ovate-oblong petal, erose-toothed margins and obovate lip with a large, oblong basal callus, and an obtuse base. In addition, three species (Bulbophyllum frostii, B. raskotii and B. nematocaulon) are reported for the first time in China.
13. Three new species of Liparis s.l. (Orchidaceae: Malaxideae) from Southwest China based on morphological characters and phylogenetic evidence
Ji-Dong Ya, Dong-Liang Lin, Zhou-Dong Han, Lei Cai, Zhi-Rong Zhang, De-Ming He, Xiao-Hua Jin, Wen-Bin Yu
Plant Diversity    2021, 43 (05): 401-408.   DOI: 10.1016/j.pld.2021.01.006
摘要119)      PDF (16839KB)(70)    收藏
Liparis aureolabella and L. mengziensis, two new species from the karst region of southwestern China, and L. bingzhongluoensis, a new species from montane region in Yunnan, are described and illustrated. L. aureolabella is easily distinguished from its relatives by having abaxially purple leave with purple reticulate veins prominent adaxially, a lip auriculate at base, and falcate-lanceolate pollinia. Liparis mengziensis is closely related to L. petiolata and L. auriculata, but differs from them by having an ovate to broadly ovate leaf, purple lip and apex connate along the margins. Liparis bingzhongluoensis is similar to Liparis nanlingensis, but the new species is characterized by having a lip with two transparent ridges on its disc, longitudinally concave basal callus and triangular column wings. Phylogenetic analyses based on nuclear ribosomal ITS and plastid matK sequences showed that L. aureolabella and L. mengziensis are nested with L. petiolata or L. auriculata in a monophyletic clade. L. bingzhongluoensis is sister to a clade formed by L. nanlingensis, L. tsii, L. sasakii and L. krameri. Moreover, morphological comparisons strongly support that the three species as separated species newly to science.
14. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China
Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng
Plant Diversity    2022, 44 (02): 222-230.   DOI: 10.1016/j.pld.2021.11.008
摘要117)      PDF (8603KB)(124)    收藏
A new species, Oreocharis xieyongii T. Deng, D.G. Zhang & H. Sun, from Hunan Province, central China, is described. The combination of purple zygomorphic corolla with longer adaxial lobes and exserted stamens defines the species and discriminates it from all other current Oreocharis species. Morphological traits of the new species were compared to those of two similar species, Oreocharis xiangguiensis and O. rubrostriata. Phylogenetic analysis indicates that the new species is nested within the Oreocharis. Although only half of Oreocharis species were included in our study, evolutionary character analysis indicates that the ancestral states of the genus are likely the purple corolla, longer abaxial lip and inserted stamens. The longer adaxial lip is perhaps an apomorphy and only present in O. xieyongii and O. rubrostriata. Both morphological and molecular evidence suggest that O. xieyongii is a taxon new to science.
15. Four new species and a new record of Orchidinae (Orchidaceae: Orchideae) from China
Dong-Liang Lin, Ji-Dong Ya, André Schuiteman, Chong-Bo Ma, Cheng Liu, Xue-Lian Guo, Shi-Si Chen, Xi-Long Wang, Zhi-Rong Zhang, Wen-Bin Yu, Xiao-Hua Jin
Plant Diversity    2021, 43 (05): 390-400.   DOI: 10.1016/j.pld.2021.05.003
摘要109)      PDF (19146KB)(174)    收藏
Four new species of Orchidaceae from China, Heminium lijiangense, Peristylus fasciculatus, Platanthera milinensis, and Ponerorchis gongshanensis, together with a new country record, Peristylus tenuicallus, are described and illustrated based on morphological and/or phylogenetic analyses. Heminium lijiangense is closely related to H. elisabethae but differs from it by having the dorsal sepal ovate-orbicular and lip mid-lobe distinctly shorter than lateral lobes. P. fasciculatus is close to Peristylus tradescantifolius but is distinguished from it by having several fascicled and straight, root-like tubers (vs. one or two oblongoid tubers), old stems usually persistent, middle lobe of lip narrowly ligulate-lanceolate and half as long as the lateral lobes (vs. middle lobe deltoid, about a third as long as the lateral lobes or less), a raised callus at the base of each lateral lobe (vs. callus absent), spur gradually attenuate toward the apex (vs. spur clavate). Platanthera milinensis is similar to P. stenochila by sharing small green flowers and lip without a spur, but differs in having a creeping rhizome, a corymbose inflorescence, and a broadly ovate and slightly 3-lobed lip. Ponerochis gongshanensis is similar to P. faberi in its small flowers, but differs in having a linear leaf c. 3 mm wide (vs. leaf 5-13 mm wide), in the lip having collar-like raised margins on the sides of the spur entrance, and a mid-lobe which is notched at the apex but not divided into two divergent lobules that are nearly as large as the lateral lobes, as in P. faberi. All the proposed species obtained high support in phylogenetic analysis as new species. The recently described genus Apetalanthe is reduced to synonymy of Ponerorchis and a new combination is made.
16. Fertile Woodwardia from the middle Eocene of South China and its implications for palaeogeography and palaeoclimate
Han-Zhang Song, Serge V. Naugolnykh, Xin-Kai Wu, Xiao-Yan Liu, Jian-Hua Jin
Plant Diversity    2022, 44 (06): 565-576.   DOI: 10.1016/j.pld.2021.09.003
摘要109)      PDF (26028KB)(19)    收藏
The genus Woodwardia, which together with the genera Anchistea and Lorinseria comprise the subfamily Woodwardioideae of Blechnaceae, has a disjunct distribution across Central and North America, Europe and the temperate to tropical areas of Asia. Fossil records of Woodwardia occur throughout the Paleogene and Neogene of North America, Europe and Asia. However, well-preserved fertile pinna fossils of this genus have not yet been reported in South China. In this paper, a new species, W.?changchangensis Naugolnykh et Song, sp. nov. is described from the middle Eocene of the Changchang Basin, Hainan Island, South China. Macromorphological and micromorphological features of the fertile pinna show a straight pinna rachis, alternate, subtriangular pinnules, acute pinnule apices, almost entire or slightly undulate pinnule margins, long-ovoid sori, stalked sporangia and spores with wing-like folds on the surface, which are characterised in detail. Overall, the present fossil is most similar to the extant species Woodwardia japonica, which mostly grows in warm and moist environments. The discovery of this new species from the Changchang Basin of Hainan Island indicates that this genus has been distributed in the low-latitude tropical regions of South China from as early as the middle Eocene. Based on this find, and previous studies of other ferns from the same site, we infer that the climate of the Palaeo-Hainan landscape during deposition of the Changchang Formation was warm and humid, similar to conditions prevailing today across this region.
17. Involvement of NAC transcription factor NaNAC29 in Alternaria alternata resistance and leaf senescence in Nicotiana attenuata
Lan Ma, Rongping Li, Luoyan Ma, Na Song, Zhen Xu, Jinsong Wu
Plant Diversity    2021, 43 (06): 502-509.   DOI: 10.1016/j.pld.2020.11.003
摘要109)      PDF (5507KB)(13)    收藏
NAC-LIKE, ACTIVATED BY AP3/PI (NAP) is a NAC transcription factor regulating leaf senescence in Arabidopsis thaliana. In wild tobacco Nicotiana attenuata, a nuclear localized NAC transcription factor NaNAC29 was identified to be highly elicited after inoculation of Alternaria alternata, a notorious necrotic fungus on tobacco species. The NaNAC29 possesses similar tertiary structure to NAP with 60% amino acid identity. However, it remains unknown the role of NaNAC29 in plant defense responses to A. alternata and leaf senescence in N. attenuata. In this paper, Defensin-like protein 1 (NaDLP1) was highly induced in N. attenuata after A. alternata inoculation and bigger lesions were developed in NaDLP1-silenced plants. Interestingly, A. alternata-induced NaDLP1 was reduced by 76% in VIGS NaNAC29 plants and by 61% in JA deficient irAOC plants at 3 days post inoculation. The regulation of NaDLP1 expression by NaNAC29 was clearly independent on JA pathway, since exogenous methyl jasmonate treatment could not complement the induction levels of NaDLP1 in NaNAC29-silenced plants to the levels in WT plants. Otherwise, the expression of NaNAC29 was low expressed in young leaves but highly in senescent leaves and darktreated leaves. NaNAC29-silenced plants, which were generated by virus-induced gene silencing (VIGS NaNAC29), showed delayed senescence phenotype. In addition, constitutive over-expression of NaNAC29 in A. thaliana could rescue the delayed-senescence phenotype of nap and caused precocious leaf senescence of wild-type Col-0 plants. All the data above demonstrate that NaNAC29 is a NAP homolog in N. attenuata participating in the defense responses to A. alternata by regulation of a defensin protein NaDLP1 and promoting leaf senescence.
18. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China
Li-Shen Qian, Hong-Hua Shi, Xiao-Kun Ou, Hang Sun
Plant Diversity    2022, 44 (01): 20-29.   DOI: 10.1016/j.pld.2021.11.004
摘要108)      PDF (8663KB)(42)    收藏
Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity. However, previous studies have mostly examined functional diversity at the community scale. Here, we examined large-scale patterns of trait occurrence and functional diversity in Delphinium along an elevational gradient from 1000 to 5700 m in the Hengduan Mountains, SW China. Elevational distribution and trait data of 102 Delphinium species were compiled to evaluate the patterns of interspecific traits, species richness, and functional diversity. We found that the distribution of species richness showed a unimodal curve that peaked between 3500 and 4000 m; functional diversity and traits showed different patterns along an elevational gradient. The functional diversity increased at a lower rate along an elevation gradient, whereas species richness continued to increase. Species with large ranges and non-endemic species were most affected by geometric constraints. Richness of species endemic to the Hengduan Mountains peaked at higher elevations, likely due to increased speciation and restricted dispersion under alpine conditions. We conclude that the middle elevation region is not only the functionally richest but also the most functionally stable region for Delphinium, which could be insurance against environmental change. Extreme conditions and strong environmental filters in an alpine environment may cause the convergence of species traits, which could relate to reducing nutrient trait investment and increasing reproductive trait investment. We conclude that large-scale studies are consistent with previous studies at the community scale. This may indicate that the relationship between functional diversity and species richness across different scales is the same.
19. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests
Qichi Yang, Hehe Zhang, Lihui Wang, Feng Ling, Zhengxiang Wang, Tingting Li, Jinliang Huang
Plant Diversity    2021, 43 (04): 264-274.   DOI: 10.1016/j.pld.2021.03.003
摘要106)      PDF (10460KB)(50)    收藏
Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests. In this study, we used a systematic quantitative approach to classify plant community types in the subtropical forests of Hubei Province (central China), and then quantified the relative contribution of drivers responsible for variation in species composition and diversity. We classified the subtropical forests in the study area into 12 community types. Of these, species diversity indices of three communities were significantly higher than those of others. In each community type, species richness, abundance, basal area and importance values of evergreen and deciduous species were different. In most community types, deciduous species richness was higher than that of evergreen species. Linear regression analysis showed that the dominant factors that affect species composition in each community type are elevation, slope, aspect, soil nitrogen content, and soil phosphorus content. Furthermore, structural equation modeling analysis showed that the majority of variance in species composition of plant communities can be explained by elevation, aspect, soil water content, litterfall, total nitrogen, and total phosphorus. Thus, the major factors that affect evergreen and deciduous species distribution across the 12 community types in subtropical evergreen-deciduous broadleaved mixed forests include elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content.
20. Phylogenetic estimation and morphological evolution of Alsineae (Caryophyllaceae) shed new insight into the taxonomic status of the genus Pseudocerastium
Gang Yao, Bine Xue, Kun Liu, Yuling Li, Jiuxiang Huang, Junwen Zhai
Plant Diversity    2021, 43 (04): 299-307.   DOI: 10.1016/j.pld.2020.11.001
摘要106)      PDF (20927KB)(241)    收藏
Pseudocerastium is a monotypic genus in Caryophyllaceae endemic to China. The genus has been widely accepted since it was described in 1998, however its phylogenetic position within Caryophyllaceae has never been studied. In the present study, the whole plastid genome and nuclear ribosomal internal transcribed spacer (ITS) sequences of Pseudocerastium stellarioides was obtained through genome skimming, and the phylogenetic position of the species was studied for the first time. Plastid phylogenomic analysis of Caryophyllaceae revealed that Pseudocerastium is clustered within the tribe Alsineae with strong support. Phylogenetic analyses based on an enlarged taxon sampling of Alsineae using five DNA regions (matK, rbcL, rps16 intron, trnL-F and ITS) revealed that P. stellarioides was nested deeply within Cerastium with strong support. Analyses of morphological character evolution suggest that the ancestral states in Alsineae include three styles and a six-lobed capsule at the apex, while both Cerastium and Pseudocerastium have five styles and ten lobes at the apex of the capsule, further supporting their close relationship. The species Pseudocerastium stellarioides is similar to Cerastium wilsonii in morphology, but differs in having villous indumentum on the lower part of the filaments and compressed globose seeds. Therefore, based on the present molecular and morphological evidence, the generic name Pseudocerastium is reduced here as a new synonym of Cerastium and the species P. stellarioides is transferred to Cerastium as C. jiuhuashanense.
21. AtWRKY75 positively regulates age-triggered leaf senescence through gibberellin pathway
Haiyan Zhang, Liping Zhang, Songguo Wu, Yanli Chen, Diqiu Yu, Ligang Chen
Plant Diversity    2021, 43 (04): 331-340.   DOI: 10.1016/j.pld.2020.10.002
摘要106)      PDF (8186KB)(35)    收藏
WRKY transcription factors play essential roles during leaf senescence. However, the mechanisms by which they regulate this process remains largely unknown. Here, we identified the transcription factor WRKY75 as a positive regulator during leaf senescence. Mutations of WRKY75 caused a delay in age-triggered leaf senescence, whereas overexpression of WRKY75 markedly accelerated this process. Expression of senescence-associated genes (SAGs) was suppressed in WRKY75 mutants but increased in WRKY75-overexpressing plants. Further analysis demonstrated that WRKY75 directly associates with the promoters of SAG12 and SAG29, to activate their expression. Conversely, GAI and RGL1, two DELLA proteins, can suppress the WRKY75-mediated activation, thereby attenuating SAG expression during leaf senescence. Genetic analyses showed that GAI gain-of-function or RGL1 overexpression can partially rescue the accelerated senescence phenotype caused by WRKY75 overexpression. Furthermore, WRKY75 can positively regulate WRKY45 expression during leaf senescence. Our data thus imply that WRKY75 may positively modulate age-triggered leaf senescence through the gibberellin-mediated signaling pathway.
22. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations
Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma
Plant Diversity    2021, 43 (06): 472-479.   DOI: 10.1016/j.pld.2021.05.005
摘要106)      PDF (4612KB)(106)    收藏
Rhododendron meddianum is a critically endangered species with important ornamental value and is also a plant species with extremely small populations. In this study, we used double digest restriction-siteassociated DNA sequencing (ddRAD) technology to assess the genetic diversity, genetic structure and demographic history of the three extant populations of R. meddianum. Analysis of SNPs indicated that R. meddianum populations have a high genetic diversity (π=0.0772 ±0.0024, HE=0.0742 ±0.002). Both FST values (0.1582-0.2388) and AMOVA showed a moderate genetic differentiation among the R. meddianum populations. Meanwhile, STRUCTURE, PCoA and NJ trees indicated that the R. meddianum samples were clustered into three distinct genetic groups. Using the stairway plot, we found that R. meddianum underwent a population bottleneck about 70,000 years ago. Furthermore, demographic models of R. meddianum and its relative, Rhododendron cyanocarpum, revealed that these species diverged about 3.05 (2.21-5.03) million years ago. This divergence may have been caused by environmental changes that occurred after the late Pliocene, e.g., the Asian winter monsoon intensified, leading to a drier climate. Based on these findings, we recommend that R. meddianum be conserved through in situ, ex situ approaches and that its seeds be collected for germplasm.
23. Taxonomy notes on Vandeae (Orchidaceae) from China: Five new species and two new records
Jian-Wu Li, Ji-Dong Ya, De-Ping Ye, Cheng Liu, Qiang Liu, Rui Pan, Zai-Xing He, Bo Pan, Jie Cai, Dong-Liang Lin, Xiao-Hua Jin
Plant Diversity    2021, 43 (05): 379-389.   DOI: 10.1016/j.pld.2021.01.009
摘要106)      PDF (59433KB)(80)    收藏
Five new species (Gastrochilus yei, Gastrochilus minimus, Luisia simaoensis, Taeniophyllum xizangense, Tuberolabium subulatum) and two newly recorded species (Cleisostoma tricornutum, Luisia inconspicua) of Vandeae (Orchidaceae) from China are described and illustrated. Gastrochilus yei is similar to G. affinis and G. nepalensis, but differs from them by having an epichile not lobed, the apex of the hypochile not bilobed, and a tine on the apex of the leaf. Gastrochilus minimus is similar to G. acinacifolius, but can be distinguished from the latter by having a flabellate epichile that is densely hirsute on the adaxial surface and an inconspicuous central cushion; in addition, the hypochile of G. minimus has a keel that extends to the apex of the epichile. Taeniophyllum xizangense is similar to T. stella and T. radiatum, but it is distinguished from them by having much bigger flowers, inflorescences densely covered with short-bristly hairs, papillae on the external surface of sepals, and bigger triangular-ovate viscidium. Luisia simaoensis is similar to L. magniflora and L. ramosii, but can be easily distinguished from them by having lateral sepals longer than dorsal sepals and petals, lip with irregular and waved margins, and lip with bilobed apex. Luisia inconspicua is moved from Gastrochilus to Luisia based on phylogenetic analyses of plastid matK sequence data. Tuberolabium subulatum is similar to T. carnosum, but it can be easily distinguished from the latter by having an inflorescence much shorter than the leaves, yellow sepals and petals, and many small papillae outside the lip lobes.
24. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data
Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan
Plant Diversity    2022, 44 (03): 300-307.   DOI: 10.1016/j.pld.2021.10.002
摘要105)      PDF (12204KB)(52)    收藏
Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors. However, cryptic plant species are widespread, particularly in Ceratopteris (Pteridaceae). Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp. exhibit high degrees of phenotypic plasticity. Here, two new cryptic species of Ceratopteris, Ceratopteris chunii and Ceratopteris chingii, are described and illustrated. Phylogenetic analyses reveal that each of the new species form a well-supported clade. C.?chunii and C.?chingii are similar to Ceratopteris gaudichaudii var. vulgaris and C. pteridoides, respectively, but distinct from their relatives in the stipe, basal pinna of the sterile leaf or subelliptic shape of the fertile leaf, as well as the spore surface. In addition, chromosome studies indicate that C.?chunii and C.?chingii are both diploid. These findings will help us further understand the origin of Ceratopteris polyploids in Asia.
25. Evolutionary history of a desert perennial Arnebia szechenyi (Boraginaceae): Intraspecific divergence, regional expansion and asymmetric gene flow
Meng-Jiao Fu, Hai-Yang Wu, Dong-Rui Jia, Bin Tian
Plant Diversity    2021, 43 (06): 462-471.   DOI: 10.1016/j.pld.2021.04.002
摘要104)      PDF (7915KB)(16)    收藏
The complex interactions of historical, geological and climatic events on plant evolution have been an important research focus for many years. However, the role of desert formation and expansion in shaping the genetic structures and demographic histories of plants occurring in arid areas has not been well explored. In the present study, we investigated the phylogeography of Arnebia szechenyi, a desert herb showing a near-circular distribution surrounding the Tengger Desert in Northwest China. We measured genetic diversity of populations using three maternally inherited chloroplast DNA (cpDNA) fragments and seven bi-paternally inherited nuclear DNA (nDNA) loci that were sequenced from individuals collected from 16 natural populations across its range and modelled current and historical potential habitats of the species. Our data indicated a considerably high level of genetic variation within A. szechenyi and noteworthy asymmetry in historical migration from the east to the west. Moreover, two nuclear genetic groups of populations were revealed, corresponding to the two geographic regions separated by the Tengger Desert. However, analysis of cpDNA data did not show significant geographic structure. The most plausible explanation for the discrepancy between our findings based on cpDNA and nDNA data is that A. szechenyi populations experienced long periods of geographic isolation followed by range expansion, which would have promoted generalized recombination of the nuclear genome. Our findings further highlight the important role that the Tengger Desert, together with the Helan Mountains, has played in the evolution of desert plants and the preservation of biodiversity in arid Northwest China.
26. New taxa of tribe Gastrodieae (Epidendroideae, Orchidaceae) from Yunnan, China and its conservation implication
Qiang Liu, Ji-Dong Ya, Xun-Feng Wu, Bing-Yi Shao, Kuan-Bo Chi, Hai-Lei Zheng, Jian-Wu Li, Xiao-Hua Jin
Plant Diversity    2021, 43 (05): 420-425.   DOI: 10.1016/j.pld.2021.06.001
摘要104)      PDF (11841KB)(78)    收藏
Gastrodia longistyla, a new species of Orchidaceae from Yunnan Province, China, is described and illustrated. It is morphologically similar to Gastrodia peichatieniana, but can be easily distinguished from the latter by having a rhombic epichile, long column (6.0-7.5 mm long), and a needle-shaped appendage (1.8-3.2 mm in length) at the base of the stigma. Identification key and colour photographs are provided. A preliminary risk-of-extinction assessment, according to the IUCN Red List Categories and Criteria, is given for the new species. The plastome of G. longistyla is 30464 bp in length with GC content approximately 24.8%, and the plastome does not contain some housekeeping genes, such as matK, rpl16, or all photosynthesis genes. In addition, the G. longistyla plastome lacks an IR region. This indicates that the plastome is in the last stage of degradation.
27. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species
Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu
Plant Diversity    2022, 44 (05): 505-517.   DOI: 10.1016/j.pld.2022.03.002
摘要104)      PDF (19220KB)(104)    收藏
Though Berberis (Berberidaceae) is widely distributed across the Eurasian landmass it is most diverse in the Himalaya–Hengduan Mountain (HHM) region. There are more than 200 species in China where it is one of the most common mountain shrubs. The study on the taxonomy and evolution of Berberis in this region can thus provide an important insight into the origin and diversification of its flora. A prerequisite to this is mapping and describing the various species of Berberis in the region – a task that despite recent progress is by no means complete. It is clear that in China there may be a significant number of species still to be described and that even with published species much about their distribution remains to be discovered. As a contribution to the first of these tasks seven new species from the northern Hengduan Mountain of N. Sichuan and S. Qinghai: Berberis chinduensis, Berberis degexianensis, Berberis jiajinshanensis, Berberis jinwu, Berberis litangensis, Berberis longquensis and Berberis riparia, are described here. Differences in overall morphology and especially in floral structures with each other and with similar species of Berberis in the same region are presented. The report is the result of phylogenetic analyses based on plastome and partial nrDNA sequences of both the seven proposed new species and a significant number of similar species already published. Provisional conclusions as to the insights provides on the history of the genetic divergence are discussed.
28. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence
Juan Chen, Sijin Zeng, Linya Zeng, Khang Sinh Nguyen, Jiawei Yan, Hua Liu, Nianhe Xia
Plant Diversity    2022, 44 (04): 389-405.   DOI: 10.1016/j.pld.2022.02.001
摘要103)      PDF (38065KB)(152)    收藏
Previous studies recognized three major lineages of the family Costaceae: a South American clade, an Asian clade and a Costus clade. However, the genus Hellenia within the Asian clade has been shown to be non-monophyletic and its morphology has not been studied carefully. Therefore, the complete plastid genomes of Hellenia species were obtained and the monophyly of Hellenia was tested through four different datasets in this study. Plastid phylogenomic analyses of Costaceae revealed that Hellenia is strongly supported as paraphyletic. Two major clades are recovered, namely the Hellenia s.s. subclade and the Parahellenia subclade. Phylogenetic analyses based on an enlarged taxon sampling of the Asian clade using a two chloroplast markers dataset (trnK intron and trnL-F spacer) confirmed the paraphyly of Hellenia. Meanwhile, morphological analyses suggested that members of the Parahellenia subclade differ from the remaining Hellenia species in many characters including inflorescences, bracts, stigma, axillary buds, floral tubes and labellum. According to the present molecular and morphological evidence, the latter subclade is recognized as a new genus, Parahellenia. Two new species are described, four new combinations are made, and identification keys are also provided.
29. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau
Xinhui Li, Tao Yang, Dandan Wang
Plant Diversity    2021, 43 (04): 275-280.   DOI: 10.1016/j.pld.2021.04.005
摘要103)      PDF (7746KB)(38)    收藏
Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns of phylogenetic and functional community structure in successional plant communities growing on the mounds of Himalayan marmots (Marmota himalayana) on the southeast edge of the Qinghai-Tibet Plateau. We found that phylogenetic and functional diversities of plant communities on marmot mounds tended to cluster during the early to medium stages of succession, then trended toward overdispersion from medium to late stages. Alpine species in early and late stages of succession were phylogenetically and functionally overdispersed, suggesting that such communities were assembled mainly through species interactions, especially competition. At the medium and late stages of succession, alpine communities growing on marmot mounds were phylogenetically and functionally clustered, implying that the communities were primarily structured by environmental filtering. During the medium and late stages of succession the phylogenetic and functional structures of plant communities on marmot mounds differed significantly from those on neighboring sites. Our results indicate that environmental filtering and species interactions can change plant community composition at different successional stages. Assembly of plant communities on marmot mounds was promoted by a combination of traits that may provide advantages for survival and adaptation during periods of environmental change.
30. Different environmental factors drive tree species diversity along elevation gradients in three climatic zones in Yunnan, southern China
Xiaoyang Song, Min Cao, Jieqiong Li, Roger L. Kitching, Akihiro Nakamura, Melinda J. Laidlaw, Yong Tang, Zhenhua Sun, Wenfu Zhang, Jie Yang
Plant Diversity    2021, 43 (06): 433-443.   DOI: 10.1016/j.pld.2021.04.006
摘要103)      PDF (3912KB)(75)    收藏
Elevational patterns of tree diversity are well studied worldwide. However, few studies have examined how seedlings respond to elevational gradients and whether their responses vary across climatic zones. In this study, we established three elevational transects in tropical, subtropical and subalpine mountain forests in Yunnan Province, southern China, to examine the responses of tree species and their seedlings to elevational gradients. Within each transect, we calculated species diversity indices and composition of both adult trees and seedlings at different elevations. For both adult trees and seedlings, we found that species diversity decreased with increasing elevation in both tropical and subalpine transects. Species composition showed significant elevational separation within all three transects. Many species had specific elevational preferences, but abundant tree species that occurred at specific elevations tended to have very limited recruitment in the understory. Our results highlight that the major factors that determine elevational distributions of tree species vary across climatic zones. Specifically, we found that the contribution of air temperature to tree species composition increased from tropical to subalpine transects, whereas the contribution of soil moisture decreased across these transects.
31. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription
Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan
Plant Diversity    2022, 44 (03): 279-289.   DOI: 10.1016/j.pld.2021.11.001
摘要102)      PDF (10469KB)(67)    收藏
The diverse members of the genus Daphne are prized for their fragrant flowers. Despite being promising ornamental plants in many countries, genetic information of Daphne is scarce. In this study, the plastomes of four species and one variety of Daphne were sequenced and analyzed. The plastomes were typical and contained a pair of inverted repeat (IR) regions that separated the large single-copy (LSC) region from the small single-copy (SSC) region. With a length ranging from 132,869 bp (D.?genkwa) to 174,773 bp (D. championii), 106 to 141 genes were predicted. Comparative plastome analysis of the newly sequenced plastomes with four publicly available Daphne plastomes identified an expansion of the IRs, sequence variations, and mutational hotspots. Phylogenetic analyses indicated that the genus Daphne in its current circumscription is polyphyletic. Daphne genkwa was nested within the genus Wikstroemia, while D.?championii was well resolved as sister to Edgeworthia. These findings concurred with results from our study that used nuclear ribosomal internal transcribed spacer sequence data. The conflicts on the molecular placement of D.?championii and D.?genkwa and the present taxonomic classification in Daphne suggest that a new intergeneric classification system of Daphneae warrants consideration.
32. Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora
Feng-Ping Zhang, Jiao-Lin Zhang, Timothy J. Brodribb, Hong Hu
Plant Diversity    2021, 43 (04): 324-330.   DOI: 10.1016/j.pld.2020.11.007
摘要102)      PDF (6760KB)(30)    收藏
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.
33. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships
Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li
Plant Diversity    2022, 44 (01): 70-82.   DOI: 10.1016/j.pld.2021.05.004
摘要102)      PDF (17943KB)(82)    收藏
Members of Veratrum are perennial herbs widely used in traditional Chinese medicine to induce vomiting, resolve blood stasis and relieve pain. However, the intrageneric classification and phylogenetic relationships within Veratrum have long been controversial due to the complexity of morphological variations and lack of high-resolution molecular markers. In this study, we reevaluated the infrageneric relationships with the genus Veratrum using complete chloroplast genome sequence data. Herein, the complete cp genomes of ten species of Veratrum were newly sequenced and characterized. The complete cp genomes of ten species of Veratrum had the typical quadripartite structure, ranging from 151,597 bp to 153,711 bp in size and comprising a total of 135 genes. The structure of Veratrum cp genomes (i.e., gene order, content, and genome components) was highly similar across species. The number of simple sequence repeats (SSRs) ranged from 63 to 78, and of long repeats ranged from 31 to 35. Eight highly divergent regions (ndhF, psbC-psbZ, psbK-psbI, rpoB-trnC_GCA, trnK_UUU-trnQ_UUG, trnS_GCU-trnG_UCC, trnT_UGU-trnL_UAA and ycf1) were identified and are potentially useful for the DNA barcoding of Veratrum. Phylogenetic analysis among 29 taxa based on cp genomes, total genes, protein-coding genes and intergenic regions strongly supported the monophyly of Veratrum. The circumscription and relationships of the infrageneric taxa of Veratrum were well-presented with great resolution. These results will facilitate the identification, taxonomy, and utilization of Veratrum plants as well as the evolutionary studies of Melanthiaceae.
34. Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species
Atefeh Ghorbanalizadeh, Hossein Akhani
Plant Diversity    2022, 44 (01): 39-69.   DOI: 10.1016/j.pld.2021.07.005
摘要101)      PDF (51016KB)(45)    收藏
In this paper a critical annotated checklist of 256 endemic and near endemic species belonging to 152 genera and 50 families of flowering plants known from Hyrcanian relict forests is presented. Distribution maps of taxa, elevational range, number of known records, chorotypes, life forms, IUCN threat categories and habitat types are also provided. The chorotypes are categorized into eight main patterns:1) the Omni-Hyrcanian pattern (OH), 2) West Hyrcanian pattern (WH), 3) Manjil-Rudbar pattern (MR), 4) Central Hyrcanian pattern (CH), 5) Central and East Hyrcanian pattern (CEH), 6) East Hyrcanian pattern (EH), 7) Alborz-Hyrcanian pattern (AH), and 8) Euxino-Hyrcanian pattern (XH). The richness and distribution maps were generated based on 5408 records gained from herbarium specimens and literature records. The life form spectra show that the majority of taxa (54.7%) belong to hemicryptophytes, followed by the tuberous, bulbous and parasitic geophytes with 45 species (17.6%) and phanerophytes with 28 taxa (10.9%). The conservation status of species according to IUCN criteria indicates that 30 taxa are Critically Endangered, 52 taxa Endangered, 30 taxa Vulnerable, 25 taxa Near Threatened and 81 taxa are of Least Concern. Our present data were not sufficient to evaluate 38 taxa that are categorized here as Data Deficient. The new combination of Leutea translucens (=Peucedanum translucens) is validated with inclusion of Peucedanum hyrcanicum as its synonym. The disjunct occurrence of the Caucasian species Gentiana grossheimii is reported from the eastern parts of the Hyrcanian forests in Iran for the first time. We conclude that (i) the Hyrcanian forests and associated habitats in the northern slopes of the Alborz Mountains harbour tremendous floristic diversity of high conservation priority, and (ii) the Hyrcanian forest zone is an important and unique center of endemism within the Euro-Siberian region that should be considered a floristic province with a large number of relict species.
35. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems
Ya-Zhou Zhang, Li-Shen Qian, Xu-Fang Chen, Lu Sun, Hang Sun, Jian-Guo Chen
Plant Diversity    2022, 44 (03): 231-242.   DOI: 10.1016/j.pld.2021.09.001
摘要99)      PDF (15342KB)(91)    收藏
The Qinghai-Tibet Plateau (QTP) is an important cushion plant hotspot. However, the distribution of cushion plants on the QTP is unknown, as are the factors that drive cushion plant distribution, limiting our understanding of the evolution of cushion species in the region. In this study, we assessed spatial patterns of total cushion plant diversity (including taxonomic and phylogenetic) over the entire QTP and compared patterns of diversity of cushion plants with different typologies (i.e., compact vs. loose). We also examined how these patterns were related to climatic features. Our results indicate that the southern QTP hosts the highest total cushion plant richness, especially in the south-central Hengduan Mountains subregion. The total number of cushion species declines from south to north and from southeast to northwest. Compact cushion plants exhibit similar patterns as the total cushion plant richness, whereas loose cushion plants show random distribution. Cushion plant phylogenetic diversity showed a similar pattern as that of the total cushion plant richness. In addition, cushion plant phylogenetic community structure was clustered in the eastern and southwestern QTP, whereas random or overdispersed in other areas. Climatic features represented by annual energy and water trends, seasonality and extreme environmental factors, had significant effects on cushion plant diversity patterns but limited effects on the phylogenetic community structure, suggesting that climatic features indeed promote the formation of cushion plants. Because cushion plants play vital roles in alpine ecosystems, our findings not only promote our understanding of the evolution and formation of alpine cushion plant diversity but also provide an indispensable foundation for future studies on cushion plant functions and thus alpine ecosystem sustainability in the entire QTP region.
36. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata
Shiming Deng, Qiang Xiao, Cigui Xu, Jian Hong, Zhijun Deng, Dan Jiang, Shijia Luo
Plant Diversity    2022, 44 (04): 417-427.   DOI: 10.1016/j.pld.2021.12.001
摘要97)      PDF (7626KB)(26)    收藏
Dove tree (Davidia involucrata), a tertiary vestige species, is well-adapted to cool conditions. Dormancy in D. involucrata seed lasts for an extremely long period of time, typically between 3 and 4 years, and this characteristic makes the species an excellent model for studying the mechanisms of seed dormancy. The molecular mechanisms governing germination control in D. involucrata are still unknown. Seed stratification have been reported to enhance germination in recalcitrant seeds. We performed a widely targeted metabolome profiling to identify metabolites and associated pathways in D. involucrata seeds from six different moist sand stratification durations (0-30 months) using the ultra-high-performance liquid chromatography-Q Exactive Orbitrap-Mass spectrometry. There was an increasing germination rate with prolonged stratification durations (12-30 months). Furthermore, we detected 10,008 metabolites in the stratified seeds. We also detected 48 differentially accumulated metabolites (DAMs) between all stratification periods in the seeds, with 10 highly conserved metabolites. Most of the differentially accumulated metabolites between unstratified and stratified seeds were enriched in purine metabolism, pyrimidine metabolism, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and arginine biosynthesis pathways. Key phytohormones, abscisic acid, indole-3 acetic acid, and sinapic acid were differentially accumulated in the seeds and are predicted to regulate dormancy in D. involucrata. We have provided extensive metabolic information useful for future works on dove tree germination study.
37. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm
Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng
Plant Diversity    2022, 44 (05): 481-491.   DOI: 10.1016/j.pld.2021.08.001
摘要96)      PDF (9341KB)(86)    收藏
Garlic (Allium sativum), an asexually propagated vegetable and medicinal crop, has abundant genetic variation. Genetic diversity evaluation based on molecular markers has apparent advantages since their genomic abundance, environment insensitivity, and non-tissue specific features. However, the limited number of available DNA markers, especially SSR markers, are insufficient to conduct related genetic diversity assessment studies in garlic. In this study, 4372 EST-SSR markers were newly developed, and 12 polymorphic markers together with other 17 garlic SSR markers were used to assess the genetic diversity and population structure of 127 garlic accessions. The averaged polymorphism information content (PIC) of these 29 SSR markers was 0.36, ranging from 0.22 to 0.49. Seventy-nine polymorphic loci were detected among these accessions, with an average of 3.48 polymorphic loci per SSR. Both the clustering analyses based on either the genotype data of SSR markers or the phenotypic data of morphological traits obtained genetic distance divided the 127 garlic accessions into three clusters. Moreover, the Mantel test showed that genetic distance had no significant correlations with geographic distance, and weak correlations were found between genetic distance and the phenotypic traits. AMOVA analysis showed that the main genetic variation of this garlic germplasm collection existed in the within-population or cluster. Results of this study will be of great value for the genetic/breeding studies in garlic and enhance the utilization of these garlic germplasms.
38. Global patterns of fern species diversity: An evaluation of fern data in GBIF
Hong Qian, Jian Zhang, Mei-Chen Jiang
Plant Diversity    2022, 44 (02): 135-140.   DOI: 10.1016/j.pld.2021.10.001
摘要96)      PDF (3938KB)(70)    收藏
Despite that several studies have shown that data derived from species lists generated from distribution occurrence records in the Global Biodiversity Information Facility (GBIF) are not appropriate for those ecological and biogeographic studies that require high sampling completeness, because species lists derived from GBIF are generally very incomplete, Suissa et al. (2021) generated fern species lists based on data with GBIF for 100 km × 100 km grid cells across the world, and used the data to determine fern diversity hotspots and species richness–climate relationships. We conduct an evaluation on the completeness of fern species lists derived from GBIF at the grid–cell scale and at a larger spatial scale, and determine whether fern data derived from GBIF are appropriate for studies on the relations of species composition and richness with climatic variables. We show that species sampling completeness of GBIF is low (<40%) for most of the grid cells examined, and such low sampling completeness can substantially bias the investigation of geographic and ecological patterns of species diversity and the identification of diversity hotspots. We conclude that fern species lists derived from GBIF are generally very incomplete across a wide range of spatial scales, and are not appropriate for studies that require data derived from species lists in high completeness. We present a map showing global patterns of fern species diversity based on complete or nearly complete regional fern species lists.
39. Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants
Lin-Bo Jia, Gi-Soo Nam, Tao Su, Gregory W. Stull, Shu-Feng Li, Yong-Jiang Huang, Zhe-Kun Zhou
Plant Diversity    2021, 43 (06): 480-491.   DOI: 10.1016/j.pld.2020.12.006
摘要95)      PDF (31755KB)(19)    收藏
Determining whether the high-latitude Bering land bridge (BLB) was ecologically suitable for the migration of mesothermal plants is significant for Holarctic phytogeographic inferences. Paleobotanical studies provide a critical source of data on the latitudinal positions of different plant lineages at different times, permitting assessment of the efficacy of the BLB for migration. Here we report exceptionally preserved fossils of Firmiana and Tilia endochrysea from the middle Miocene of South Korea. This represents a new reliable record of Firmiana and the first discovery of the T. endochrysea lineage in the fossil record of Asia. The occurrence of these fossils in South Korea indicates that the two lineages had a distribution that extended much farther north during the middle Miocene, but they were still geographically remote from the BLB. In light of the broader fossil record of Asia, our study shows that, in the middle Miocene, some mesothermal plants apparently inhabited the territory adjacent to the BLB and thus they were possibly capable of utilizing the BLB as a migratory corridor. Some other mesothermal plants, such as Firmiana and the T. endochrysea lineages, however, are restricted to more southern regions relative to the BLB based on current fossil evidence. These lineages may have been ecologically unable to traverse the BLB, which raises questions about the efficacy of the BLB as a universal exchange route for mesothermal plants between Asia and North America during the middle Miocene.
40. Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants
Juan Song, Jinge Bian, Na Xue, Yuxing Xu, Jianqiang Wu
Plant Diversity    2022, 44 (01): 1-10.   DOI: 10.1016/j.pld.2021.03.004
摘要92)      PDF (8442KB)(127)    收藏
mRNAs are transported within a plant through phloem. Aphids are phloem feeders and dodders (Cuscuta spp.) are parasites which establish phloem connections with host plants. When aphids feed on dodders, whether there is trafficking of mRNAs among aphids, dodders, and host plants and if aphid feeding affects the mRNA transfer between dodders and hosts are unclear. We constructed a green peach aphid (GPA, Myzus persicae)-dodder (Cuscuta australis)-cucumber (Cucumis sativus) tritrophic system by infesting GPAs on C. australis, which parasitized cucumber hosts. We found that GPA feeding activated defense-related phytohormonal and transcriptomic responses in both C. australis and cucumbers and large numbers of mRNAs were found to be transferred between C. australis and cucumbers and between C. australis and GPAs; importantly, GPA feeding on C. australis greatly altered inter-species mobile mRNA profiles. Furthermore, three cucumber mRNAs and three GPA mRNAs could be respectively detected in GPAs and cucumbers. Moreover, our statistical analysis indicated that mRNAs with high abundances and long transcript lengths are likely to be mobile. This study reveals the existence of inter-species and even inter-kingdom mRNA movement among insects, parasitic plants, and parasite hosts, and suggests complex regulation of mRNA trafficking.
41. Multiple lines of evidence supports the two varieties of Halenia elliptica (Gentianaceae) as two species
Jin-Feng Wu, Dong-Rui Jia, Rui-Juan Liu, Zhi-Li Zhou, Lin-Lin Wang, Min-Yu Chen, Li-Hua Meng, Yuan-Wen Duan
Plant Diversity    2022, 44 (03): 290-299.   DOI: 10.1016/j.pld.2021.09.004
摘要92)      PDF (2442KB)(43)    收藏
Delimiting species requires multiple sources of evidence. Here, we delimited two varieties of Halenia elliptica (Gentianaceae) using several lines of evidence, including morphological traits and mating system in a sympatric population, phylogenetic relationships based on nrITS and cpDNA (rpl16) data, and complete chloroplast genome sequences. Comparative analysis of 21 morphological traits clearly separates the two varieties of H.?elliptica. Examination of the flowering process and pollination treatments indicate that H.?elliptica var. grandiflora produces seeds via outcrossing, whereas H.?elliptica var. elliptica produces seeds via mixed mating. Furthermore, hand-pollinated hybridization of the two varieties produced no seeds. Observations of pollinators showed that when bees began a pollination bout on H.?elliptica var. grandiflora they preferred to continue pollinating this variety; however, when they began a pollination bout on H.?elliptica var. elliptica, they showed no preference for either variety. Phylogenetic analysis confirmed the monophyly of H.?elliptica, which was further divided into two monophyletic clades corresponding to the two varieties. A large number of variants from the chloroplast genomes reflected remarkable genetic dissimilarities between the two varieties of H.?elliptica. We recommend that the two varieties of H.?elliptica should be revised as two species (H.?elliptica and H. grandiflora). Our findings indicate that H.?elliptica varieties may have split into two separate species due to a shift in mating system, changes in flowering phenology and/or post-pollination reproductive isolation.
42. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): Insights into species divergence and adaptive evolution
Hanqing Tang, Lu Tang, Shicheng Shao, Yulan Peng, Lu Li, Yan Luo
Plant Diversity    2021, 43 (05): 350-361.   DOI: 10.1016/j.pld.2021.01.003
摘要91)      PDF (10138KB)(65)    收藏
Bulbophyllum is the largest genus in Orchidaceae with a pantropical distribution. Due to highly significant diversifications, it is considered to be one of the most taxonomically and phylogenetically complex taxa. The diversification pattern and evolutionary adaptation of chloroplast genomes are poorly understood in this species-rich genus, and suitable molecular markers are necessary for species determination and phylogenetic analysis. A natural Asian section Macrocaulia was selected to estimate the interspecific divergence of chloroplast genomes in this study. Here, we sequenced the complete chloroplast genome of four Bulbophyllum species, including three species from section Macrocaulia. The four chloroplast genomes had a typical quadripartite structure with a genome size ranged from 156,182 to 158,524 bp. The chloroplast genomes included 113 unique genes encoding 79 proteins, 30 tRNAs and 4 rRNAs. Comparison of the four chloroplast genomes showed that the three species from section Macrocaulia had similar structure and gene contents, and shared a number of indels, which mainly contribute to its monophyly. In addition, interspecific divergence level was also great. Several exclusive indels and polymorphism SSR loci might be used for taxonomical identification and determining interspecific polymorphisms. A total of 20 intergenic regions and three coding genes of the most variable hotspot regions were proposed as candidate effective molecular markers for future phylogenetic relationships at different taxonomical levels and species divergence in Bulbophyllum. All of chloroplast genes in four Bulbophyllum species were under purifying selection, while 13 sites within six genes exhibited site-specific selection. A whole chloroplast genome phylogenetic analysis based on Maximum Likelihood, Bayesian and Parsimony methods all supported the monophyly of section Macrocaulia and the genus of Bulbophyllum. Our findings provide valuable molecular markers to use in accurately identifying species, clarifying taxonomy, and resolving the phylogeny and evolution of the genus Bulbophyllum. The molecular markers developed in this study will also contribute to further research of conservation of Bulbophyllum species.
43. Orchid diversity in China: Recent discoveries
Zhihua Zhou, Ronghong Shi, Yu Zhang, Xiaohua Jin
Plant Diversity    2021, 43 (05): 341-342.   DOI: 10.1016/j.pld.2021.07.004
摘要90)      PDF (298KB)(76)    收藏
44. Genome size evolution of the extant lycophytes and ferns
Fa-Guo Wang, Ai-Hua Wang, Cheng-Ke Bai, Dong-Mei Jin, Li-Yun Nie, AJ Harris, Le Che, Juan-Juan Wang, Shi-Yu Li, Lei Xu, Hui Shen, Yu-Feng Gu, Hui Shang, Lei Duan, Xian-Chun Zhang, Hong-Feng Chen, Yue-Hong Yan
Plant Diversity    2022, 44 (02): 141-152.   DOI: 10.1016/j.pld.2021.11.007
摘要90)      PDF (7442KB)(209)    收藏
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
45. Species richness patterns and the determinants of larch forests in China
Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang
Plant Diversity    2022, 44 (05): 436-444.   DOI: 10.1016/j.pld.2022.05.002
摘要88)      PDF (9821KB)(111)    收藏
Larch forests are important for species diversity, as well as soil and water conservation in mountain regions. In this study, we determined large-scale patterns of species richness in larch forests and identified the factors that drive these patterns. We found that larch forest species richness was high in southern China and low in northern China, and that patterns of species richness along an elevational gradient depend on larch forest type. In addition, we found that patterns of species richness in larch forests are best explained by contemporary climatic factors. Specifically, mean annual temperature and annual potential evapotranspiration were the most important factors for species richness of tree and shrub layers, while mean temperature of the coldest quarter and anomaly of annual precipitation from the Last Glacial Maximum to the present were the most important for that of herb layer and the whole community. Community structural factors, especially stand density, are also associated with the species richness of larch forests. Our findings that species richness in China's larch forests is mainly affected by energy availability and cold conditions support the ambient energy hypothesis and the freezing tolerance hypothesis.
46. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae)
Chao Liu, Huan-Huan Chen, Li-Zhou Tang, Phyo Kay Khine, Li-Hong Han, Yu Song, Yun-Hong Tan
Plant Diversity    2022, 44 (04): 377-388.   DOI: 10.1016/j.pld.2021.11.009
摘要88)      PDF (12208KB)(32)    收藏
Litsea, a non-monophyletic group of the tribe Laureae (Lauraceae), plays important roles in the tropical and subtropical forests of Asia, Australia, Central and North America, and the islands of the Pacific. However, intergeneric relationships between Litsea and Laurus, Lindera, Parasassafras and Sinosassafras of the tribe Laureae remain unresolved. In this study, we present phylogenetic analyses of seven newly sequenced Litsea plastomes, together with 47 Laureae plastomes obtained from public databases, representing six genera of the Laureae. Our results highlight two highly supported monophyletic groups of Litsea taxa. One is composed of 16 Litsea taxa and two Lindera taxa. The 18 plastomes of these taxa were further compared for their gene structure, codon usage, contraction and expansion of inverted repeats, sequence repeats, divergence hotspots, and gene evolution. The complete plastome size of newly sequenced taxa varied between 152,377 bp (Litsea auriculata) and 154,117 bp (Litsea pierrei). Seven of the 16 Litsea plastomes have a pair of insertions in the IRa (trnL-trnH) and IRb (ycf2) regions. The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features, codon usage, oligonucleotide repeats, and inverted repeat dynamics. The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots, which are located in the same regions. We also identified six protein coding genes (accD, ndhJ, rbcL, rpoC2, ycf1 and ycf2) under positive selection in Litsea; these genes may play important roles in adaptation of Litsea species to various environments.
47. Potential distributional shifts in North America of allelopathic invasive plant species under climate change models
Anson Wang, Anthony E. Melton, Douglas E. Soltis, Pamela S. Soltis
Plant Diversity    2022, 44 (01): 11-19.   DOI: 10.1016/j.pld.2021.06.010
摘要87)      PDF (2462KB)(26)    收藏
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios. Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics. Here, we focused on six species of allelopathic flowering plants—Ailanthus altissima, Casuarina equisetifolia, Centaurea stoebe ssp. micranthos, Dioscorea bulbifera, Lantana camara, and Schinus terebinthifolia—that are invasive in North America and examined their potential to spread further during projected climate change. We used Species Distribution Models (SDMs) to predict future suitable areas for these species in North America under several proposed future climate models. ENMEval and Maxent were used to develop SDMs, estimate current distributions, and predict future areas of suitable climate for each species. Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America. Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States, while new areas may become suitable in the northeastern United States and southeastern Canada. These findings show an overall northward shift of suitable climate during the next few decades, given projected changes in temperature and precipitation. Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.
48. Non-host plants: Are they mycorrhizal networks players?
Yanliang Wang, Xinhua He, Fuqiang Yu
Plant Diversity    2022, 44 (02): 127-134.   DOI: 10.1016/j.pld.2021.06.005
摘要87)      PDF (1728KB)(60)    收藏
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.
49. Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus
Zeng-Qiang Xia, Zuo-Ying Wei, Hui Shen, Jiang-Ping Shu, Ting Wang, Yu-Feng Gu, Amit Jaisi, Yue-Hong Yan
Plant Diversity    2022, 44 (03): 262-270.   DOI: 10.1016/j.pld.2021.08.004
摘要86)      PDF (8608KB)(21)    收藏
Lycophytes are an ancient clade of the non-flowering vascular plants with chromosome numbers that vary from tens to hundreds. They are an excellent study system for examining whole-genome duplications (WGDs), or polyploidization, in spore-dispersed vascular plants. However, a lack of genome sequence data limits the reliable detection of very ancient WGDs, small-scale duplications (SSDs), and recent WGDs. Here, we integrated phylogenomic analysis and the distribution of synonymous substitutions per synonymous sites (Ks) of the transcriptomes of 13 species of lycophytes to identify, locate, and date multiple WGDs in the lycophyte family Lycopodiaceae. Additionally, we examined the genus Phlegmariurus for signs of genetic discordance, which can provide valuable insight into the underlying causes of such conflict (e.g., hybridization, incomplete lineage sorting, or horizontal gene transfer).We found strong evidence that two WGD events occurred along the phylogenetic backbone of Lycopodiaceae, with one occurring in the common ancestor of extant Phlegmariurus (Lycopodiaceae) approximately 22–23 million years ago (Mya) and the other occurring in the common ancestor of Lycopodiaceae around 206–214 Mya. Interestingly, we found significant genetic discordance in the genus Phlegmariurus, indicating that the genus has a complex evolutionary history. This study provides molecular evidence for multiple WGDs in Lycopodiaceae and offers phylogenetic clues to the evolutionary history of Lycopodiaceae.
50. Reproduction and genetic diversity of Juniperus squamata along an elevational gradient in the Hengduan Mountains
Tsam Ju, Zhi-Tong Han, Markus Ruhsam, Jia-Liang Li, Wen-Jing Tao, Sonam Tso, Georg Miehe, Kang-Shan Mao
Plant Diversity    2022, 44 (04): 369-376.   DOI: 10.1016/j.pld.2021.12.002
摘要86)      PDF (10830KB)(32)    收藏
Elevation plays a crucial factor in the distribution of plants, as environmental conditions become increasingly harsh at higher elevations. Previous studies have mainly focused on the effects of large-scale elevational gradients on plants, with little attention on the impact of smaller-scale gradients. In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains. We found that the genetic structure (single, clonal, mosaic) of J. squamata shrubs is affected by differences in elevational gradients of only 150 m. Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower- or higher-elevation plots. Human activity can significantly affect genetic structure, as well as reproductive strategy and genetic diversity. Sub-populations at mid-elevations had the highest yield of seed cones, lower levels of asexual reproduction and higher levels of genetic diversity. This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations. Our findings provide new insights into the finer scale genetic structure of alpine shrubs, which may improve the conservation and management of shrublands, a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.