PDR 2010, 32(6) 508-518 DOI:   10.3724/SP.J.1143.2010.10085  ISSN: 2095-0845 CN: 53-1217/Q

Current Issue | Archive | Search                                                            [Print]   [Close]
muci
Information and Service
This Article
Supporting info
PDF(658KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Cold stress
Fertilization
Gene expression
Heat stress
Plant sexual reproduction
Pollen
Authors
ZU Chang-Song-1、2
YU Di-Qiu-1
PubMed
Article by Zu, C. S. 1、2
Article by Yu, D. Q. 1

Temperature Stress on Plant Sexual Reproduction

 ZU  Chang-Song-1、2, YU  Di-Qiu-1

1 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The sexual reproduction in flowering plants is highly sensitive to hot or cold temperature stresses, thus temperature is fatal to reproductive success. This review describes studies of temperature stress on plant sexual reproductions, which suggests that pollen development may be the most sensitive reproductive stage. Transcriptome and proteomic studies shows that the genes including calmodulin, calcium dependent protein kinase 2, HSFs, and HSPs, might be involved in heat stress response pathways that function during pollen development. Understanding how plants cope with stress during reproductive development provides the oppotunity to identify genetic traits that can improve temperature tolerance in selected crop breeding and agronomic plants by genetic engineering.

Keywords Cold stress   Fertilization   Gene expression   Heat stress   Plant sexual reproduction   Pollen  
Received 2010-04-27 Revised  Online: 2010-10-08 
DOI: 10.3724/SP.J.1143.2010.10085
Fund:
Corresponding Authors:
Email:
About author:

References:

Adamczyk BJ, Fernandez DE, 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis \
[J\]. Plant Physiology, 149: 1713—1723
Aggarwal D, Poehlman JM, 1977. Effects of photoperiod and temperature on flowering in mungbean (Vigna radiata L. Wilczek) \
[J\]. Euphytica, 26: 207—219
Allen DJ, Ort DR, 2001. Impacts of chilling temperatures on photosynthesis in warmclimate plants \
[J\]. Trends in Plant Science, 6: 36—42
Aloni B, Peet M, Pharr M  et al, 2001. The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination \
[J\]. Physiologia Plantarum, 112: 505—512
Apel K, Hirt H, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction \
[J\]. Annual Review of Plant Biology, 55: 373—399
Balasubramanian S, Sureshkumar S, Lempe J  et al, 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature \
[J\]. Plos Genetics, 2: 980—989
Badr SA, Hartmann HT, Martin GC, 1970. Endogenous gibberellins and inhibitors in relation to flower induction and inflorescence development in the olive \
[J\]. Plant Physiology, 46: 674—679
Baniwal SK, Bharti K, Chan KY  et al, 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors \
[J\]. Journal of Biosciences, 29: 471—487
Barnabs B, Jager K, Feher A, 2008. The effect of drought and heat stress on reproductive processes in cereals \
[J\]. Plant, Cell & Environment, 31: 11—38
Battisti DS, Naylor RL, 2009. Historical warnings of future food insecurity with unprecedented seasonal heat \
[J\]. Science, 323: 240—244
Berger JD, Buck R, Henzell JM  et al, 2005. Evolution in the genus Cicer—Vernalisation response and low temperature pod set in chickpea (Carietinum L.) and its annual wild relatives \
[J\]. Australian Journal of Agricultural Research, 56: 1191—1200
Berger JD, Ali M, Basu PS  et al, 2006. Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India \
[J\]. Field Crops Research, 98: 230—244
Blazquez MA, Ahn JH, Weigel D, 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana \
[J\]. Nature Genetics, 33: 168—171
Blum A, Sinmena B, Mayer J  et al, 1994. Stem reserve mobilization supports wheatgrain filling under heatstress \
[J\]. Australian Journal of Plant Physiology, 21: 771—781
Brooking IR, 1976. Male sterility in Sorghum bicolor L. Moench induced by low night temperature. I: Timing of the stage of sensitivity \
[J\]. Australian Journal of Plant Physiology, 3: 589—596
Busch W, Wunderlich M, Schoffl F, 2005. Identification of novel heat shock factordependent genes and biochemical pathways in Arabidopsis thaliana \
[J\]. The Plant Journal, 41: 1—14
Casper BB, 1990. Timing of embryo abortion and the effect of ovule thinning on nutlet mass in Cryptantha flava (Boraginaceae) \
[J\]. Annales Botanici Fennici, 65: 489—492
Charles WB, Harris RE, 1972. Tomato fruitset at high and lowtemperatures \
[J\]. Canadian Journal of Plant Science, 52: 497—506
Chinnusamy V, Zhu J, Zhu JK, 2007. Cold stress regulation of gene expression in plants \
[J\]. Trends in Plant Science, 12: 444—451
Clarke HJ, Siddique KHM, 2004. Response of chickpea genotypes to low temperature stress during reproductive development \
[J\]. Field Crops Research, 90: 323—334
Craufurd PQ, Wheeler TR, 2009. Climate change and the flowering time of annual crops \
[J\]. Journal of experimental botany, 60: 2529—2539
Croser JS, Clarke HJ, Siddique KHM  et al, 2003. Lowtemperature stress: implications for chickpea (Cicer arietinum L.) improvement \
[J\]. Critical Reviews in Plant Sciences , 22: 185—219
Dong YS, Zhao LM, Liu B  et al, 2004. The genetic diversity of cultivated soybean grown in China \
[J\]. Theoretical and Applied Genetics, 108: 931—936
Dong NV, Subudhi PK, Luong PN, 2000. Molecular mapping of a rice thermosensitive genic male sterile by AFLP, RFLP and SSR techniques \
[J\]. Theoretical and Applied Genetics, 100: 727—734
Dupuis I, Dumas C, 1990. Influence of temperature stress on in vitro fertilization and heatshock proteinsynthesis in maize (Zea mays L.) reproductive tissues \
[J\]. Plant Physiology, 94: 665—670
Fischer G, Shah M, Tubiello FN  et al, 2005. Socioeconomic and climate change impacts on agriculture: an integrated assessment, 1990-2080 \
[J\]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 360: 2067—2083
Fowler S, Thomashow MF, 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway \
[J\]. Plant Cell, 14: 1675—1690
Frank G, Pressman E, Ophir R  et al, 2009. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response \
[J\]. Journal of Experimental Botany, 60: 3891—3908
Funatsuki H, Ohnishi S, 2009. Recent advances in physiological and genetic studies on chilling tolerance in soybean \
[J\]. Japan Agricultural Research Quarterly, 43: 95—101
Gounaris K, Brain ARR, Quinn PJ  et al, 1984. Structural reorganization of chloroplast thylakoid membranes in response to heatstress \
[J\]. Biochimica et Biophysica Acta, 766: 198—208
Grobei MA, Qeli E, Brunner E  et al, 2009. Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function \
[J\]. Genome Research, 19: 1786—1800
Hayase H, Satake T, Nishiyama I  et al, 1969. Male sterility caused by cooling treatment at the meiotic stage in rice plants. II. The most sensitive stage to cooling and the fertilising ability of pistils \
[J\]. Proceedings of the Crop Science Society of Japan, 38: 706—711
Hedhly A, Hormaza JI, Herrero M, 2005. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach \
[J\]. Plant Biology, 7: 476—483
Hedhly A, Hormaza JI, Herrero M, 2008. Global warming and plant sexual reproduction \
[J\]. Trends in Plant Science, 14: 30—36
Herrero M, 2003. Male and female synchrony and the regulation of mating in flowering plants \
[J\]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358: 1019—1024
Herrero M, Arbeloa A, 1989. Influence of the pistil on pollentube kinetics in peach (Prunus persica) \
[J\]. American Journal of Botany , 76: 1441—1447
Herrero MP, Johnson RR, 1980. Hightemperature stress and pollen viability of maize \
[J\]. Crop Science, 20: 796—800
Honys D, Twell D, 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis \
[J\]. Genome Biology, 5: R85
Hopf N, Plesofskyvig N, Brambl R, 1992. The heatshock response of pollen and other tissues of maize \
[J\]. Plant Molecular Biology, 19: 623—630
Howarth CJ, 2005. Genetic improvements of tolerance to high temperature \
[A\]. In: Ashraf M, Harris PJC eds. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches \
[M\]. New York: Haworth Press Inc., 277—300
Huyghe C, 1991. Winter growth of autumnsown white lupin (Lupinus albus L.): main apex growth model \
[J\]. Annales Botanici Fennici, 67: 429—434
Iba K, 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance \
[J\]. Annual Review of Plant Biology, 53: 225—245
Jagadish SVK, Muthurajan R, Oane R  et al, 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) \
[J\]. Journal of Experimental Botany, 61: 143—156
Jain M, Prasad PVV, Boote KJ  et al, 2007. Effects of seasonlong high temperature growth conditions on sugartostarch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench) \
[J\]. Planta, 227: 67—79
Jakobsen HB, Martens H, 1994. Influence of temperature and aging of ovules and pollen on reproductive success in Trifolium repens L \
[J\]. Annals of Botany (London), 74: 493—501
Kakani VG, Prasad PVV, Craufurd PQ  et al, 2002. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature \
[J\]. Plant, Cell & Environment , 25: 1651—1661
Kakani VG, Reddy KR, Koti S  et al, 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature \
[J\]. Annals of Botany(London), 96: 59—67
Koh H, Son YH, Heu MH, 1999. Molecular mapping of a new genic malesterility gene causing chalky endosperm in rice (Oryza sativa L.) \
[J\]. Euphytica, 106: 57—62
Kosova K, Prasil IT, Vitamvas P, 2008. The relationship between vernalization and photo periodicallyregulated genes and the development of frost tolerance in wheat and barley \
[J\]. Biologia Plantarum, 52: 601—615
Kotak S, Larkindale J, Lee U  et al, 2007. Complexity of the heat stress response in plants \
[J\]. Current Opinion in Plant Biology, 10: 310—316
Kreps JA, Wu YJ, Chang HS  et al, 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress \
[J\]. Plant Physiology, 130: 2129—2141
Larkindale J, Vierling E, 2008. Core genome responses involved in acclimation to high temperature \
[J\]. Plant Physiology, 146: 748—761
Lardon A, TriboiBlondel AM, 1994. Freezing injury to ovules, pollen and seed in winter rape \
[J\]. Journal of Experimental Botany, 45: 1177—1181
Law RD, CraftsBrandner SJ, 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose1, 5bisphosphate carboxylase/oxygenase \
[J\]. Plant Physiology, 120: 173—181
Lee BH, Henderson DA, Zhu JK, 2005. The Arabidopsis cold responsive transcriptome and its regulation by ICE1 \
[J\]. The Plant Cell, 17: 3155—3175
Lee JY, Lee DH, 2003. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress \
[J\]. Plant Physiology, 132: 517—529
Lin ZF, Zhong SL, Grierson D, 2009. Recent advances in ethylene research \
[J\]. Journal of Experimental Botany, 60: 3311—3336
Liu DL, 2007. Incorporating vernalization response functions into an additive phonological model for reanalysis of the flowering data of annual pasture legumes \
[J\]. Field Crops Research, 101: 331—342
Lynch DV, 1990. Chilling injury in plants: the relevance of membrane lipids \
[A\]. In: Katterman E ed. Environmental Injury in Plants \
[M\]. San Diego: Academic Press, CA, 17—34
Ma SY, Wu WH, 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses \
[J\]. Plant Molecular Biology, 65: 511—518
Malhó R, Liu Q, Monteiro D  et al, 2006. Signalling pathways in pollen germination and tube growth \
[J\]. Protoplasma, 228: 21—30
Matsui T, Omasa K, 2002. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics \
[J\]. Annals of Botany(London), 89: 683—687
Mittler R, 2006. Abiotic stress, the field environment and stress combination \
[J\]. Trends in Plant Science, 11: 15—19
Morrison MJ, Stewart DW, 2002. Heat stress during flowering in summer Brassica \
[J\]. Crop Science, 42: 797—803
Myers C, Romanowsky SM, Barron YD  et al, 2009. Calciumdependent protein kinases regulate polarized tip growth in pollen tubes \
[J\]. The Plant Journal, 59: 528—539
Nayyar H, Bains TS, Kumar S  et al, 2005. Chilling effect during seed filling on accumulation of seed reserves and yield of chickpea \
[J\]. Journal of the Science of Food and Agriculture, 85: 1925—1930
Oliver SN, Dennis ES, Dolferus R, 2007. ABA regulates apoplastic sugar transport and is a potential signal for coldinduced pollen sterility in rice \
[J\]. Plant and Cell Physiology , 48: 1319—1330
Oliver SN, Van Dongen JT, Alfred SC  et al, 2005. Coldinduced repression of the rice antherspecific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility \
[J\]. Plant, Cell & Environment, 28: 1534—1551
Park SY, Fung P, Nishimura N  et al, 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins \
[J\]. Science, 324: 1068—1071
Peet MM, Sato S, Gardner RG, 1998. Comparing heat stress effects on malefertile and malesterile tomatoes \
[J\]. Plant, Cell & Environment, 21: 225—231
Pina C, Pinto F, Feijo JA  et al, 2005. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation \
[J\]. Plant Physiology, 138: 744—756
Prasad PVV, Craufurd PQ, Summerfield RJ, 1999. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress \
[J\]. Annals of Botany (London), 84: 381—386
Putterill J, Laurie R, Macknight R, 2004. It′s time to flower: the genetic control of flowering time \
[J\]. Bioessays, 26: 363—373
Qin Y, Leydon AR, Manziello A  et al, 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointingto genes critical for growth in a pistil \
[J\]. PLoS Genetics, 5: e1000621
Rosenzweig CA, Iglesias XB, Yang PR  et al, 2001. Climate change and extreme weather events. Implications for food production, plant diseases and pest \
[J\]. Global Change & Human Health, 2: 90—104
Rymen B, Fiorani F, Kartal F  et al, 2007. Coldnights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes \
[J\]. Plant Physiology, 143: 1429—1438
Saini HS, Sedgley M, Aspinall D, 1983. Effect of heatstress during floral development on pollentube growth and ovary anatomy in wheat (Triticum aestivum L.) \
[J\]. Ausralia Journal of Plant Physiology, 10: 137—144
Saini HS, Sedgley M, Aspinall D, 1984. Developmental anatomy in wheat of malesterility induced by heatstress, water deficit or abscisicacid \
[J\]. Ausralia Journal of Plant Physiology, 11: 243—253
Sakata T, Takahashi H, Nishiyama I  et al, 2000. Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. \
[J\]. Journal of Plant Research , 113: 395—402
Salem MA, Kakani VG, Koti S  et al, 2007. Pollenbased screening of soybean genotypes for high temperatures \
[J\]. Crop Science, 47: 219—231
Sasani S, Hemming MN, Oliver SN  et al, 2009. The influence of vernalization and daylength on expression of floweringtime genes in the shoot apex and leaves of barley (Hordeum vulgare) \
[J\]. Journal of Experimental Botany,60: 2169—2178
Satake T, 1976. Determination of the most sensitive stage to steriletype cool injury in rice plants \
[J\]. Res Bull Hokkaido Natl Exp Station, 116: 1—44
Sataka T, Hayase H, 1970. Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage and the most sensitive stage to coolness \
[J\]. Proceedings of the Crop Science Society of Japan, 39: 468—473
Sato S, Peet MM, Thomas JF, 2002. Determining critical pre and postanthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures \
[J\]. Journal of Experimental Botany, 53: 1187—1195
Seo E, Lee H, Jeon J  et al, 2009. Crosstalk between cold response and flowering in Arabidopsis is mediated through the floweringtime gene SOC1 and its upstream negative regulator FLC \
[J\]. The Plant Cell, 21 (10): 3185—3197
Shuff T, Thomas JF, 1993. Normal floral ontogeny and cool temperatureinduced aberrant floral development in Glycine max (Fabaceae) \
[J\]. American Journal of Botany, 80: 429—448
Singh SK, Kakani VG, Brand D  et al, 2008. Assessment of cold and heat tolerance of wintergrown canola (Brassica napus L.) cultivars by pollenbased parameters \
[J\]. Journal of Agronomy and Crop Science, 194: 225—236
Smith SD, Nowak RS, 1990. Ecophysiology of plants in the intermountain lowlands \
[A\]. In: Osmond CB, Pitelka LF, Hidy GM eds. Plant Biology of the Basin and Range \
[M\]. New York: SpringerVerlag, 179—241
Snedden WA, Fromm H, 2001. Calmodulin as a versatile calcium signal transducer in plants \
[J\]. New Phytologist, 151: 35—66
Snider JL, Oosterhuis DM, Skulman BW  et al, 2009. Heat stressinduced limitations to reproductive success in Gossypium hirsutum \
[J\]. Physiologia Plantarum, 137: 125—138
Solomon S, Qin D, Manning M  et al, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change \
[M\]. New York: Cambridge University Press
Srinivasan A, Saxena NP, Johansen C, 1999. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function \
[J\]. Field Crops Research, 60: 209—222
Strasser BJ, 1997. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients \
[J\]. Photosynthesis Research, 52: 147—155
Subudhi PK, Bortatati RP, Virmani SS, 1997. Molecular mapping of a thermo sensitive genic male sterility in rice using bulked sergeant analysis \
[J\]. Genome, 40: 188—194
Suzuki N, Mittler R, 2006. Reactive oxygen species and temperature stresses: a delicate balance between signalling and destruction \
[J\]. Physiologia Plantarum, 126: 45—51
Takeoka Y, Hiroi K, Kitano H  et al, 1991. Pistil hyperplasia in rice spikelets as affected by heatstress \
[J\]. Sexual Plant Reproduction, 4: 39—43
Thakur P, Kumar S, Malik JA  et al, 2010. Cold stress effects on reproductive development in grain crops: an overview \
[J\]. Environmental and Experimental Botany, 67: 429—443
Thomashow MF, 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms \
[J\]. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 571—599
Tonsor SJ, Scott C, Boumaza I  et al, 2008. Heat shock protein 101 effects in Arabidopsis thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions \
[J\]. Molecular Ecology, 17: 1614—1626
USDA, 2009. Agriculture secretary vilsack launches national institute of food and agriailture, announces vision for science and research at USDA \
[OL\]. http://wwwusdagov/wps/portal/usda/usdahone?contentidonly=true&contentid=2009/10/0501xml
Verelst W, Saedler H, Munster T, 2007. MIKC* MADSProtein complexes bind motifs enriched in the proximal region of late pollenspecific Arabidopsis promoters \
[J\]. Plant Physiology, 143: 447—460
Wahid A, Gelani S, Ashraf M  et al, 2007. Heat tolerance in plants: an overview \
[J\]. Environmental and Experimental Botany, 61: 199—223
Wang B, Xu WW, Wang JZ  et al, 1995. Tagging and mapping the thermosensitive genic malesterile gene in rice with molecular marker \
[J\]. Theoretical and Applied Genetics, 91: 1111—1114
Wang YG, Xing QH, Deng QY  et al, 2003a. Fine mapping of the rice thermosensitive genic malesterile gene tms5 \
[J\]. Theoretical and Applied Genetics, 107 (5): 917—921
Wang WX, Vinocur B, Altman A, 2003b. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance \
[J\]. Planta, 218: 1—14
Wang WX, Vinocur B, Shoseyov O  et al, 2004. Role of plant heatshock proteins and molecular chaperones in the abiotic stress response \
[J\]. Trends Plant Science, 9: 244—252
Wang Y, Zhang WZ, Song LF  et al, 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis \
[J\]. Plant Physiology, 148: 1201—1211
Whittle CA, Otto SP, Johnston MO  et al, 2009. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana \
[J\]. BotanyBotanique, 87: 650—657
YamaguchiShinozaki K, Shinozaki K, 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses \
[J\]. Annual Review of Plant Biology, 57: 781—803
Young LW, Wilen RW, BonhamSmith PC, 2004. High temperature stress of Brassica napus during flowering reduces micro and megagametophyte fertility, induces fruit abortion, and disrupts seed production \
[J\]. Journal of Experimental Botany, 55: 485—495
Yang KZ, Xia C, Liu XL, 2009. A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis \
[J\].The Plant Journal, 57: 870—882
Zhu SY, Yu XC, Wang XJ  et al, 2007. Two calciumdependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis \
[J\]. The Plant Cell, 19: 3019—3036
Zou CS, Jiang WB, Yu DQ, 2010. Male gametophytespecific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis \
[J\]. Journal of Experimental Botany, 61: 3901—3914

Similar articles
1.Liu Chengyun.STUDlES OF POLLEN MORPHOLOGY IN THE BRETSCHNEIDERACEAE AND THE RELATlVE FAMILIES[J]. PDR, 1986,8(04): 1-3
2.Liu Chengyun.STUDIES OF POLLEN MORPHOLOGY IN THE RHOIPTEACEAE AND THE RELATIVE FAMILIES[J]. PDR, 1987,9(02): 1-3
3.Gao Baochun.THE SOCIOLOGICAL CHARACTERISTICS AND POLLEN MORPHOLOGY OF ACANTHOCHLAMYS[J]. PDR, 1987,9(04): 1-3
4.Wu Yushu,Xiao Jiayi.MODERN POLLEN RAIN ON LIANGWANG MOUNTAIN OF CHENGGONG, YUNNAN[J]. PDR, 1989,11(02): 1-3
5.LI Ping PU Zhu-Mao XU Luo-Shan XU Guo-Jun.STUDY ON THE POLLEN MORPHOLOGY OF FRIT1LLARIA FROM CHINA[J]. PDR, 1991,13(01): 1-3
6.WEI Zhong-Xin.COMPARISON OF POLLEN MORPHOLOGY OF BRASSICA ALBOGLABRA AND SOME OTHER SPECIES OF THE GENUS BRASSICA[J]. PDR, 1991,13(03): 1-3
7.TANG Ya.A STUDY ON MELHANIA HAMILTONIANA IN RELATION TO THE SYSTEMATIC POSITION OF THE GENUS[J]. PDR, 1992,14(01): 1-3
8.FANG Run-Qi, XIE Shu-Qing, XIANG Su-Fang, ZHANG Jin-Tan.A STUDY OF THE AIRBORNE AND ALLERGENIC SPORES AND POLLEN GRAINS IN KUNMING[J]. PDR, 1992,14(03): 1-3
9.LIANG Han-Xing.STUDY ON THE POLLEN MORPHOLOGY OF SAURURACEAE[J]. PDR, 1992,14(04): 1-3
10.WEI Zhong-Xin WU Zheng-Yi.POLLEN ULTRASTRUCTURE OF LIRIODENDRON AND ITS SYSTEMATIC SIGNIFICANCE[J]. PDR, 1993,15(02): 1-3
11.YE Guang-Zheng.STUDY ON THE POLLEN MORPHOLOGY OF THE GENUS DRACAENA (LILIACEAE) IN CHINA[J]. PDR, 1993,15(03): 1-3
12.TU Peng-Fei, XU Luo-Shan, XU Guo-Jun, PU Zhu-Mao, SU Bao-Liang.STUDY ON THE POLLEN MORPHOLOGY OF ADENOPHORA FROM CHINA[J]. PDR, 1993,15(04): 1-3
13.WANG Ping-Li PU Fa-Ting.POLLEN MORPHOLOGY OF TONGOLOA, A ENDEMIC GENUS IN CHINA AND ITS TAXONOMIC SIGNIFICANCE[J]. PDR, 1994,16(04): 1-3
14.WU Yu-Su XIAO Jia-Yi.A PRELIMINARY STUDY ON MODERN POLLEN RAIN OF ZABUYE SALT LAKE AREA, XIZANG[J]. PDR, 1995,17(01): 1-3

Comment for this article:

Copyright by PDR