PDR 2014, 36(01) 41-46 DOI:     ISSN: 2095-0845 CN: 53-1217/Q

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Microsatellite markers
Rhododendron spinuliferum
Rhododendron spiciferum
YAN Li-Jun-1、2、3
ZHANG Zhi-Rong-2
LI De-Zhu-1、2
GAO Lian-Ming-1
Article by Yan, L. J. 1、2、3
Article by Zhang, Z. R. 2
Article by Li, D. Z. 1、2
Article by Gao, L. M. 1

Isolation and Characterization of Microsatellite Markers for the Chinese Endemic Species Rhododendron spinuliferum (Ericaceae)

 YAN  Li-Jun-1、2、3, ZHANG  Zhi-Rong-2, LI  De-Zhu-1、2, GAO  Lian-Ming-1

1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences,
Kunming 650201, China; 2 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences,
Kunming 650201, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China


Rhododendron spinuliferum (Ericaceae) is an ornamental and medicinal plant endemic to southwest China. In order to study hybridization between Rspinuliferum and Rspiciferum, a FIASCO (Fast Isolation by AFLP of Sequences Containing Repeats) method was used to develop microsatellite markers in Rspinuliferum. A total of 28 microsatellite markers were isolated from 100 SSR primer pairs, of which 22 were polymorphic. Polymorphism of the 22 polymorphic loci was assessed separately in 24 individuals collected from two wild populations. The number of alleles per locus ranged from 2 to 5, with an average of 34, while observed (HO) and expected (HE) heterozygosities varied from 0083 to 0792 and from 0153 to 0744, respectively. The same 28 microsatellite markers were also tested in two wild populations (12 individuals from each) of Rspiciferum. Twenty two of the markers were successfully amplified, of which 20 were polymorphic. Estimates of diversity in two natural populations of Rspiciferum based on the 20 polymorphic markers revealed that number of alleles per locus ranged from 2 to 6, with a mean of 32, while observed (HO) and expected (HE) heterozygosities ranged from 0000 to 0833 and from 0117 to 0736, respectively. These newly developed microsatellite markers will be used in future studies of hybridization and the population genetics of Rspinuliferum and its closely related species.

Keywords Microsatellite markers   Rhododendron spinuliferum   Rhododendron spiciferum   FIASCO   Polymorphism  
Received  Revised  Online:  
Corresponding Authors:
About author:


Chamberlain D, Hyam R, Argent G et al., 1996. The Genus Rhododendron: Its Classification and Synonymy[M]. Edinburgh: Royal Botanic Garden Edinburgh
Chen SX (陈善信), Hua Q (华青), Liu KY (刘昆云), 1996. Pharmacognostics studies on Rhododendron spinuliferum Franch[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy (中国民族民间医药杂志), 23: 24—26
Fang MY, Fang RC, He MY et al., 2005. Rhododendron[A]. In: Wu CY, Raven PH (eds.), Flora of China[M]. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 14: 260—455
Gao LM, Zhang ZR, Zhou P et al., 2012. Microsatellite markers developed for Corallodiscus lanuginosus (Gesneriaceae) and crossspecies transferability[J]. American Journal of Botany, 99: e490—e492
HandelMazzetti H, 1936. Symbolae Sinicae 7: Die Abnahme Eines Teiles Verpflichtet Zur Abnanme Des Ganzen Werkes[M]. Germany: Springer, Wien, 775
Kron KA, Gawen LM, Chase MW, 1993. Evidence for introgression in azaleas (Rhododendron; Ericaceae): chloroplast DNA and morphological variation in a hybrid swarm on Stone Mountain, Georgia[J]. American Journal of Botany, 80: 1095—1099
Liu J (刘杰), Gao LM (高连明), 2011. Comparative analysis of three different methods of total DNA extraction used in Taxus[J]. Guihaia (广西植物), 31: 244—249
Ma YP, Zhang CQ, Zhang JL et al., 2010. Natural hybridization between Rhododendron delavayi and R. cyanocarpum (Ericaceae), from morphological, molecular and reproductive evidence[J]. Journal of Integrative Plant Biology, 52: 844—851
Milne RI, Abbott RJ, 2008. Reproductive isolation among two interfertile Rhododendron species: low frequency of postF1 hybrid genotypes in alpine hybrid zones[J]. Molecular Ecology, 17: 1108—1121
Milne RI, Davies C, Prickett R et al., 2010. Phylogeny of Rhododendron subgenus Hymenanthes based on chloroplast DNA markers: betweenlineage hybridization during adaptive radiation?[J]. Plant Systematics and Evolution, 285: 233—244
Offerman J, Rychlik W, 2003. Oligo primer analysis software[A]. In: Krawetz S, Womble D (eds.), Introduction to Bioinformatics: A Theoretical and Practical Approach[M]. New Jersey: Humana Press, 345—361
Rousset F, 2008. Genepop′007: a complete reimplementation of the Genepop software for Windows and Linux[J]. Molecular Ecology Resources, 8: 103—106
Yan LJ, Gao LM, Li DZ, 2013. Molecular evidence for natural hybridization between Rhododendron spiciferum and R. spinuliferum (Ericaceae) [J]. Journal of Systematics and Evolution, 51 (4): 426—434
Yang HB (杨汉碧), Fang RC (方瑞征), Jin CL (金存礼), 1999. Ericaceae[A]. In: Fang RC (方瑞征) (ed.), Flora Reipublicae Popularis Sinicae (中国植物志) [M]. Beijing: Science Press, 57: 1—213
Zane L, Bargelloni L, Patarnello T, 2002. Strategies for microsatellite isolation: a review[J]. Molecular Ecology, 11: 1—16
Zha HG, Milne RI, Sun H, 2010. Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China[J]. Annals of Botany, 105: 89—100
Zhang JL, Zhang CQ, Gao LM et al., 2007. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence[J]. Journal of Plant Research, 120: 457—463

Similar articles
1.YANG Rui-Wu WEI Xiu-Hua ZHOU Yong-Hong ZHENG You-Liang.Genetic Polymorphism of Gliadin in Leymus[J]. PDR, 2003,25(05): 1-3
2.CAI Ning-Feng1 , 2 , YAN Ning1 , HU Hong1 , LIU Tao3.Genetic Structure and Clonal Diversity of Cypripedium flavum (Orchidaceae) Populations from South-West China[J]. PDR, 2008,30(01): 69-75
3. TANG Xiao-Xin-1、2, HUANG Shuang-Quan-1.Research Progress on Diversity and Variation in Flower Color[J]. PDR, 2012,34(3): 239-247
4. HE Qing-Yuan-1、2, LI Zheng-Peng-1, WU Ping-1, YANG Hong-Yan-2, WANG Song-Hua-1.Start Codon Region-related Polymorphism (SCRP): A Novel DNA Marker Technique for Assessing Genetic Diversity in Alfalfa Germplasm Collections[J]. PDR, 2013,35(1): 48-54
5. WU Chun-Yan-1、2, GAO Li-Zhi-1.SNP Analysis of Six Nuclear Gene Fragments for Studying Population Genetics of Oryza granulata from China[J]. PDR, 2013,35(5): 537-546

Comment for this article:

Copyright by PDR