PDR 2015, 37(4) 439-452 DOI:   10.7677/ynzwyj201514126  ISSN: 2095-0845 CN: 53-1217/Q

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Stipa purpurea
Tibetan Plateau
Adaptation and evolution
Climate change
LI Xiong-1、2、3
YANG Shi-Hai-3、4
YANG Yun-Qiang-1、2
YIN Xin-1、2、3
SUN Xu-Dong-1、2
YANG Yong-Ping-1、2
Article by Li, X. 1、2、3
Article by Yang, S. H. 3、4
Article by Yang, Y. Q. 1、2
Article by Yin, X. 1、2、3
Article by Sun, X. D. 1、2
Article by Yang, Y. P. 1、2

Comparative Physiological and Molecular Analyses of Intraspecific Differences of Stipa purpurea (Poaceae) Response to Drought

 LI  Xiong-1、2、3, YANG  Shi-Hai-3、4, YANG  Yun-Qiang-1、2, YIN  Xin-1、2、3, SUN  Xu-Dong-1、2, YANG  Yong-Ping-1、2

1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences,
Kunming 650201, China; 2 Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese
Academy of Sciences, Kunming 650201, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China


Stipa purpurea Griseb, the dominant species of alpine steppe, is widely distributed across the large precipitation gradient on the Tibetan Plateau. It is possible that because of local adaptation, Spurpurea populations from different habitats along this precipitation gradient respond differently to drought, which may affect their responses to climate change. To explore the problem, in the present study, we investigated the physiological and molecular response of Spurpurea seedlings from two different populations (Pulan & Cuoqin) to 14d drought stress and subsequent recovery. The results showed that the relative water content, chlorophyll fluorescence, content of osmoticant proline and malondialdehyde (indicator of oxidative stress), accumulation of reactive oxygen species, antioxidant enzyme activities and the expression of droughtrelated genes all changed under drought treatment and went back to the control levels in the subsequent recovery in plants from Pulan. However, these patterns were quite different in plants from Cuoqin, in which these traits changed by inconsistent degrees and did not return to pretreatment levels after rewatering. The results demonstrated that the plants from Pulan had greater resistance to drought stress compared with those from Cuoqin, which had a larger mortality rate ultimately. Combating the differences of offspring in response to drought and the habitat distribution of parents, we considered that genetic basis has been obtained in response to precipitation difference among Spurpurea populations. The results help to understand the adaptation and evolution of Spurpurea to the special environment and the effect of climate change to this botanical system.

Keywords Stipa purpurea   Tibetan Plateau   Drought   Adaptation and evolution   Climate change  
Received 2014-09-12 Revised  Online: 2014-11-27 
DOI: 10.7677/ynzwyj201514126

The National Natural Sciences Foundation of China (41271058) and the Major State Basic Research Development Program (2010CB951700)

Corresponding Authors:
About author:


Able AJ, 2003. Role of reactive oxygen species in the response of barley to necrotrophic pathogens[J]. Protoplasma, 221: 137—143
Aharon R, Shahak Y, Wininger S et al., 2003. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress[J]. The Plant Cell, 15:439—447
Aranjuelo I, Molero G, Erice G et al., 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)[J]. Journal of Experimental Botany, 62: 111—12
Ashraf M, Foolad MR, 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 59: 206—216
Bai XG, Yang LM, Yang YQ et al., 2011. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize[J]. Journal of Proteome Research, 10: 4349—4364
Barbosa H, Slater NKH, Marcos JC, 2009. Protein quantification in the presence of poly (ethylene glycol) and dextran using the Bradford method[J]. Analytical Biochemistry, 395: 108—110
Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for waterstress studies[J]. Plant and Soil, 39: 205—207
Beikircher B, Mayr S, 2009. Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana[J]. Tree Physiology, 29: 765—775
Bothe O, Fraedrich K, Zhu XH, 2010. The largescale circulations and summer drought and wetness on the Tibetan plateau[J]. International Journal of Climatology, 30: 844—855
Bothe O, Fraedrich K, Zhu XH, 2011. Largescale circulations and Tibetan Plateau summer drought and wetness in a highresolution climate model[J]. International Journal of Climatology, 31: 832—846
Carlyle C, Fraser LH, Turkington R, 2014. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient[J]. Oecologia, 174: 1065—1073
Catala R, Ouyang J, Abreu IA et al., 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses[J]. The Plant Cell, 19: 2952—296
Chaumont F, Tyerman SD, 2014. Aquaporins: highly regulated channels controlling plant water relations[J]. Plant Physiology, 164: 1600—1618
Chaves MM, Maroco JP, Pereira JS, 2003. Understanding plant responses to droughtfrom genes to the whole plant[J]. Functional Plant Biology, 30: 239—264
Chen LG, Song Y, Li SJ et al., 2012. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica Et Biophysica ActaGene Regulatory Mechanisms, 1819: 120—128
Cui XH, Hao FS, Chen H et al., 2008. Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance[J]. Journal of Plant Research, 121: 207—214
Danielson JAH, Johanson U, 2008. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens[J]. BMC Plant Biology, 8: 45
Fang KY, Wilmking M, Davi N et al., 2014. An ensemble weighting approach for dendroclimatology: drought reconstructions for the northeastern Tibetan Plateau[J]. PloS One, 9: e86689
Eulgem T, Somssich IE, 2007. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology, 10: 366—371
Flexas J, RibasCarbo M, Hanson DT et al., 2006. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo[J]. The Plant Journal, 48: 427—439
Fordyce JA, 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity[J]. Journal of Experimental Biology, 209: 2377—2383
Fu QS, Yang RC, Wang HS et al., 2013. Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress[J]. Photosynthetica, 51: 109—114
Gou XH, Chen FH, Jacoby G et al., 2007. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau[J]. International Journal of Climatology, 27: 1497—1503
Gou XH, Chen FH, Yang MX et al., 2006. A comparison of treering records and glacier variations over the past 700 years, northeastern Tibetan Plateau[J]. Annals of Glaciology, 43: 86—90
Hamanishi ET, Raj S, Wilkins O et al., 2010. Intraspecific variation in the Populus balsamifera drought transcriptome[J]. Plant Cell and Environment, 33: 1742—1755
Hare PD, Cress WA, van Staden J, 1999. Proline synthesis and degradation: a model system for elucidating stressrelated signal transduction[J]. Journal of Experimental Botany, 50: 413—434
Hu MY, Zhang L, Luo TX et al., 2012. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China[J]. Chinese Journal of Plant Ecology, 36: 136—143
Huang GT, Ma SL, Bai LP et al., 2012. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 39: 969—987
Jiang MY, Zhang JH, 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant and Cell Physiology, 42: 1265—1273
Johanson U, Karlsso, M, Johansson I et al., 2001. The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology, 126: 1358—1369
Kelly G, Sade N, Attia Z et al., 2014. Relationship between Hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth[J]. PloS One, 9: e87888
Klein JA, Harte J, Zhao XQ, 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 7: 1170—1179
Li X, Yang YQ, Ma L et al., 2014. Comparative proteomics analyses of Kobresia pygmaea adaptation to environment along an elevational gradient on the central Tibetan Plateau[J]. PloS One, 9: e98410
Liu S, Wang X, Wang H et al., 2013. Genomewide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L[J]. PloS Genetics, 9: e1003790
Lu YW, Duan BL, Zhang XL et al., 2009. Intraspecific variation in drought response of Populus cathayana grown under ambient and enhanced UVB radiation[J]. Annals of Forest Science, 66: 613
Luu D, Boursiac Y, Chen S et al., 2007. Regulation of plant aquaporins in response to water stress[J]. Comparative Biochemistry and Physiology aMolecular & Integrative Physiology, 146: S152—S152
Mihailova G, Petkova S, Buchel C et al., 2011. Desiccation of the resurrection plant Haberlea rhodopensis at high temperature[J]. Photosynthesis Research, 108: 5—13
Moon SJ, Han SY, Kim DY et al., 2014. Ectopic expression of CaWRKY1, a pepper transcription factor, enhances drought tolerance in transgenic potato plants[J]. Journal of Plant Biology, 57: 198—207
Moore JP, VicreGibouin M, Farrant JM et al., 2008. Adaptations of higher plant cell walls to water loss: drought vs desiccation[J]. Physiologia Plantarum, 134: 237—245
Morgan JM, 1984. Osmoregulation and waterstress in higherplants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 35: 299—319
Nakano Y, Asada K, 1981. Hydrogenperoxide is scavenged by ascorbatespecific peroxidase in spinachchloroplasts[J]. Plant and Cell Physiology, 22: 867—880
Nelson DE, Repetti PP, Adams TR et al., 2007. Plant nuclear factor Y (NFY) B subunits confer drought tolerance and lead to improved corn yields on waterlimited acres[J]. Proceedings of the National Academy of Sciences of the United States of America, 104: 16450—16455
Ni J, 2000. A simulation of biomes on the Tibetan Plateau and their responses to global climate change[J]. Mountain Research and Development, 20: 80—89
Nicotra AB, Davidson A, 2010. Adaptive phenotypic plasticity and plant water use[J]. Functional Plant Biology, 37: 117—127
Niyogi KK, 1999. Photoprotection revisited: Genetic and molecular approaches[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 333—359
Qiu YP, Yu DQ, 2009. Overexpression of the stressinduced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 65: 35—47
Rivero RM, Kojima M, Gepstein A et al., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 104: 19631—19636
Rushton DL, Tripathi P, Rabara RC et al., 2012. WRKY transcription factors: key components in abscisic acid signaling[J]. Plant Biotechnology Journal, 10: 2—11
Sade N, Gebretsadik M, Seligmann R et al., 2010. The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress[J]. Plant Physiology, 152: 245—254
Sandquist DR, Ehleringer JR, 1997. Intraspecific variation of leaf pubescence and drought response in Encelia farinosa associated with contrasting desert environments[J]. New Phytologist, 135: 635—644
Sandquist DR, Ehleringer JR, 1998. Intraspecific variation of drought adaptation in brittlebush: leaf pubescence and timing of leaf loss vary with rainfall[J]. Oecologia, 113: 162—169
Scandalios JG, 1993. Oxygen stress and superoxide dismutase[J]. Plant Physiology, 101: 7—12
Shen CM, Liu KB, Morrill C et al., 2008. Ecotone shift and major droughts during the midlate holocene in the central Tibetan Plateau[J]. Ecology, 89: 1079—1088
Siefritz F, Otto B, Bienert GP et al., 2004. The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco[J]. The Plant Journal, 37: 147—155
Siefritz F, Tyree MT, Lovisolo C et al., 2002. PIP1 plasma membrane aquaporins in tobacco: From cellular effects to function in plants[J]. The Plant Cell, 14: 869—876
Smirnoff N, 1998. Plant resistance to environmental stress[J]. Current Opinion in Biotechnology, 9: 214—219
Sun JY, Liu Y, 2013. Drought variations in the middle Qilian Mountains, northeast Tibetan Plateau, over the last 450 Years as reconstructed from tree rings[J]. Dendrochronologia, 31: 279—285
Sun XL, Sun MZ, Luo X et al., 2013. A Glycine soja ABAresponsive receptorlike cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses[J]. Planta, 237: 1527—1545
Terzi R, Saruhan Guler N, Kutlu Caliskan N et al., 2013. Lignification response for rolled leaves of Ctenanthe setosa under longterm drought stress[J]. Turkish Journal of Biology, 37: 614—619
Tripathi P, Rabara RC, Rushton PJ, 2014. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 239: 255—266
Turgut R, Kadioglu A, 1998. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa[J]. Biologia Plantarum, 41: 629—633
Uehlein N, Lovisolo C, Siefritz F et al., 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions[J]. Nature, 425: 734—737
Walker DW, Miller JC, 1986. Intraspecific variability for drought resistance in Cowpea[J]. Scientia Horticulturae, 29: 87—100
Wang DC, Wu J, Yang YH et al., 2013. Intraspecific variation of leaf epidermal cuticle waxes under scanning electronic microscope: Stipa purpurea and Oxytropis microphylla from the QinghaiTibet Plateau[J]. Plant Diversity and Resources, 3: 348—354
Wang LY, Abbott RJ, Zheng W et al., 2009. History and evolution of alpine plants endemic to the QinghaiTibetan Plateau: Aconitum gymnandrum (Ranunculaceae)[J]. Molecular Ecology, 18: 709—721
Wang QX, Fan XH, Wang MB, 2014. Recent warming amplification over high elevation regions across the globe[J]. Climate Dynamics, 43: 87—101
Wang ZY, Su G, Luo P et al., 2013. A study of soildynamics based on a simulated drought in an alpine meadow on the Tibetan Plateau[J]. Journal of Mountain Science 10: 833—844
Wu GJ, Zhang CL, Xu BQ et al., 2013. Atmospheric dust from a shallow ice core from Tanggula: implications for drought in the central Tibetan Plateau over the past 155 years[J]. Quaternary Science Reviews, 59: 57—66
Wu XL, Shiroto Y, Kishitani S et al., 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 28: 21—30
YamaguchiShinozaki K, Shinozaki K, 2004. Signal transduction pathways for the activation of ABAresponsive gene expression in droughtstress response[J]. Plant and Cell Physiology, 45: S24—S24
YamaguchiShinozaki K, Shinozaki K, 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology, 57: 781—803
Yang Y, Guo JY, Wang GX et al., 2012. Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of Abies fabri seedlings in eastern Tibetan Plateau[J]. New Forests, 43: 505—518
Yang Y, Wang GX, Yang LD et al., 2013. Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan Plateau[J]. Journal of Plant Growth Regulation, 32: 298—306
Yordanov I, Velikova V, Tsonev T, 1999. Influence of drought, high temperature, and carbamide cytokinin 4PU30 on photosynthetic activity of bean plants. 1. Changes in chlorophyll fluorescence quenching[J]. Photosynthetica, 37: 447—457
Yordanov I, Velikova V, Tsonev T, 2000. Plant responses to drought, acclimation, and stress tolerance[J]. Photosynthetica, 38: 171—186
Yue PP, Lu XF, Ye RR et al., 2011. Distribution of Stipa purpurea steppe in the Northeastern QinghaiXizang Plateau (China) [J]. Russian Journal of Ecology, 42: 50—56
Zhou QY, Tian AG, Zou HF et al., 2008. Soybean WRKYtype transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 6: 486—503
Zhou XM, Wang ZB, Du Q, 1987. Vegetation of Qinghai[M]. Xining: QinghaiPeople Press
Zhu XH, Bothe O, Fraedrich K, 2011. Summer atmospheric bridging between Europe and East Asia: Influences on drought and wetness on the Tibetan Plateau[J]. Quaternary International, 236: 151—157
Zhuang Q, He J, Lu Y et al., 2010. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a processbased biogeochemical model[J]. Global Ecology and Biogeography, 19: 649—662

Similar articles
1. YANG Xue-Qing-1、2, YANG Xue-Fei-3, HE Jun-1, LIU Pei-Gui-4, HU Jian-Chu-1.Future Distribution of Tuber indicum under Climate Change Scenarios——A Case Study in Yunnan Province[J]. PDR, 0,(): 62-72
3.TIAN Mei-Hua1 , 2 , TANG An-Jun2 , 3 , SONG Song-Quan4.The Effects of Temperature and Osmotic Stress on the Germination of Scorzonera pusilla (Compositae) Seeds[J]. PDR, 2007,29(06): 682-686
4.WANG Ai-Ying1 , 2 , JIANG Yan-Juan1 , 2 , HAO Guang-You1 , 2 , CAO Kun-Fang1.

The Effect of Seasonal Drought to Plant Hydraulics and Photosynthesis of Three Dominant Evergreen Tree Species in Seasonal Tropical Rainforest of
Xishuangbanna Limestone Area

[J]. PDR, 2008,30(03): 325-332
5.ZHOU Guo-Yan1 , 2 , YANG Zheng-An3 , ZHANG Yin-Hua3 , GUO Feng-Gen3 ,
ZHOU Xiao-Gang1 , 2 , ZHANG Shao-Song1 , 2 , SUN Mao-Lin1 , 2 ,
WU Shao-Yun1 , 2 , DING Yue-Mei1 , 2
.Agrobacterium tumefaciens-mediated Transformation of Cabbage
with Betaine Aldehyde Dehydrogenase Gene
[J]. PDR, 2009,31(04): 335-343
6.YANG Feng-Xi1 , 2 , YU Di-Qiu1.

Overexpression of Arabidopsis MiR396 Enhances Drought Tolerance in Transgenic Tobacco Plants

[J]. PDR, 2009,31(05): 421-426
7. YANG Lei-1, SUN Ping-2, LIN Ying-Chao-2, TANG Zhong-Hua-2.Ethylene Signal is Involved in Regulating Arabidopsis Response to Drought Stress Stimulated by PEG[J]. PDR, 2010,32(S17): 89-96
8. XU Bin, LIANG Liu-Ke, LI Xiang-Yu, LIU Peng-Fei, LIU Xiao-Jing, SHU Lian-Qi.Biological Characteristics Analysis of Ophiocordyceps sinensis[J]. PDR, 2012,34(5): 478-482
9. YANG Xue-Qing-1、2, YANG Xue-Fei-3, HE Jun-1, LIU Pei-Gui-4, HU Jian-Chu-1.Future Distribution of Tuber indicum under Climate Change Scenarios——A Case Study in Yunnan Province[J]. PDR, 2013,35(1): 62-72
10. WANG Dong-Chao-1、2, WU Jie-3、5, YANG Yong-Hong-1, CHEN Jia-Hui-2、3、4, YANG Yong-Ping-3、4.Intraspecific Variation of Leaf Epidermal Cuticle Waxes under Scanning Electronic Microscope:Stipa purpurea and Oxytropis microphylla from the QinghaiTibet Plateau[J]. PDR, 2013,35(3): 348-354
11. LI Xiong, YIN Xin, YANG Shi-Hai, YANG Yun-Qiang, HU Xiang-Yang, YANG Yong-Ping.Effects of Temperatures on Seed Germination Characteristics of Alpine Plant Stipa purpurea (Poaceae)*[J]. PDR, 2014,36(06): 698-706

Comment for this article:

Copyright by PDR