? Abstract
Plant Diversity 2017, 39(03) 117-122 DOI:   http://dx.doi.org/10.1016/j.pld.2017.05.003  ISSN: 2096-2703 CN: 53-1233

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Elymus nutans
Karyotype variation
Inter-genomic translocation

High molecular karyotype variation revealed in indigenous Elymus nutans in the Qinghai Plateau

Quanwen Dou a, *, Feng Yu a, b, Yuan Li a, b, Yanyan Zhao a, b, Ruijuan Liu a, b

a Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
b Graduate University of Chinese Academy of Sciences, Beijing, 100049, China


The karyotypes of 27 individuals of Elymus nutans from eight wild populations in the Qinghai Plateau were analyzed using sequential FISH and GISH. High FISH pattern polymorphism and karyotype variation were detected within and among populations. The chromosome variations were mainly characterized as repeat deletions and amplifications along with inter-genomic translocations. The chromosomes of the St and Y genomes demonstrated higher polymorphism than those of the H genome. Six different intergenomic translocations were identified in 33.3% of individuals; type I and II translocations were detected with higher frequency. Further analysis revealed that type I and II translocations were distributed in
different geographic regions. The origin of high karyotype variation of E. nutans in the Qinghai plateau is further discussed.

Keywords Elymus nutans   Karyotype variation   Inter-genomic translocation  
Received 2016-08-29 Revised  Online: 2017-05-13 
DOI: http://dx.doi.org/10.1016/j.pld.2017.05.003
Fund:the National Natural Science Foundation of Qinghai Province (2015-ZJ-903) and the National Natural Science Foundation of China (31072075)
Corresponding Authors:
About author:

Badaeva, E.D., Badaev, N.S., Gill, B.S., Filatenko, A.A., 1994. Intraspecific karyotype
divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 192, 117e145.
Badaeva, E.D., Jiang, J., Gill, B.S., 1995. Detection of intergenomic translocations with
centromeric and noncentromeric breakpoints in Triticum araraticum: mechanism
of origin and adaptive significance. Genome 38, 976e981.
Chen, S.Y., Ma, X., Zhang, X.Q., Chen, Z.H., 2009a. Genetic variation and geographical
divergence in Elymus nutans Griseb. (Poaceae: Triticeae) from west China.
Biochem. Syst. Ecol. 37, 716e722.
Chen, S.Y., Zhang, X.Q., Ma, X., Huang, L.K., 2013. Assessment of genetic diversity and
differentiation of Elymus nutans indigenous to QinghaieTibet Plateau using
simple sequence repeats markers. Can. J. Plant Sci. 93, 1089e1096.
Chen, Z.H., Miao, J.M., Zhong, J.C., Ma, X., Chen, S.Y., Zhang, X.Q., 2009b. Genetic
diversity of wild Elymus nutans germplasm detected by SRAP markers. Acta
Prataculturae Sin. 18 (5), 192e200.
Chester, M., Gallagher, J.P., Symonds, V.V., Cruz da Silva, A.V., Mavrodiev, E.V.,
Leitch, A.R., et al., 2012. Extensive chromosomal variation in a recently formed
natural allopolyploid species, tragopogon miscellus (asteraceae). Proc. Natl.
Acad. Sci. U. S. A. 109 (4), 1176e1181.
Cuadrado, A., Schwarzacher, T., 1998. The chromosomal organization of simple
sequence repeats in wheat and rye genomes. Chromosoma 107 (8), 587e594.
Dou, Q.W., Lei, Y.T., Li, X.M., Mott, I., Wang, R.R.-C., 2012. Characterization of alien
chromosomes in backcross derivatives of Triticum aestivum  Elymus rectisetus
hybrids by using molecular markers and sequential multicolor FISH/GISH.
Genome 55, 337e347.
Dou, Q.W., Chen, Z.G., Liu, Y.A., Tsujimoto, H., 2009. High frequency of karyotype
variation revealed by sequential FISH and GISH in plateau perennial grass
forage Elymus nutans. Breed. Sci. 59, 651e656.
Dou, Q.W., Wang, R.R.-C., Lei, Y.T., Yu, F., Li, Y., Wang, H.Q., Chen, Z.G., 2013. Genome
analysis of 7 Kengyilia species with FISH and GISH. Genome 56, 641e649.
Dou, Q.W., Zhang, T.L., Tsujimoto, H., 2011. Physical mapping of repetitive sequences
and genomg analysis in six Elymus species by in situ hybridization. J. Syst. Evol.
49 (4), 347e352.
Fan, X., Sha, L.N., Dong, Z.Z., Zhang, H.Q., Kang, H.Y., Wang, Y., et al., 2013. Phylogenetic
relationships and Y genome origin in Elymus l. sensu lato (Triticeae;
poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences. Mol.
Phylogenetics Evol. 69 (3), 919e928.
Gill, B.S., 1991. Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution
and speciation in polyploid plants. In: Sasakuma, T., Kinoshita, T. (Eds.),
Proceedings of Dr. H. Kihara Memorial International Symposium on Cytoplasmic
Engineering in Wheat, pp. 48e53.
Q. Dou et al. / Plant Diversity 39 (2017) 117e122 121
Jiang, J., Gill, B.S., 1994. Different species-specific chromosome translocations in
Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid
wheat. Chromosome Res. 2 (1), 59e64.
Jiang, J., Gill, B.S., 2006. Current status and the future of fluorescence in situ hybridization
(FISH) in plant genome research. Genome 49, 1057e1068.
Kawahara, T., 1986. Difference in structural variability of genomes in Triticum and
Aegilops. Wheat Inf. Serv. 63, 43.
Lipman, M.J., Chester, M., Soltis, P.S., Soltis, D.E., 2013. Natural hybrids between
Tragopogon mirus and T. miscellus (asteraceae): a new perspective on karyotypic
changes following hybridization at the polyploid level. Am. J. Bot. 100 (10),
Liu, C.J., Atkinson, M.D., Chinoy, C.N., Devos, K.M., Gale, M.D., 1992. Nonhomoeologous
translocations between group 4, 5 and 7 chromosomes within
wheat and rye. Theor. Appl. Genet. 83 (3), 305e312.
L€ove, A., 1984. Conspectus of the Triticeae. Feddes Repert. 95, 425e521.
Lu, B.R., 1993. Meiotic studies of Elymus nutans and E. jacquemontii (Poaceae: Triticeae)
and their hybrids with Pseudoroegneria spicata and seventeen Elymus
species. Plant Syst. Evol. 186, 193e212.
Lu, G.P., Nie, B., 2002. Field evaluation of Elymus nutans under alpine grassland
conditions. Pratacultural Sci. 19, 13e15.
Lu, B.R., Yan, Ji, Yang, J.L., 1990. Cytological observations on Triticeae materials from
Xinjiang, Qinghai and Sichuan. Plant Divers. 12 (01), 1e3.
Lu, S.L., Sun, Y.H., Liu, S.W., Yang, Y.C., Wu, Z.L., Guo, B.Z., et al., 1987. Flora Reipublicae
Popularis Sinicae, 9(3). Science Press, Beijing.
Lu, S.L., Liu, S.W., Wu, Z.L., He, T.N., Zhou, L.H., et al., 1999. Flora Qinghaiica, vol. 4.
Qinghai People's Publishing Press, Xining.
Miao, J.M., Zhang, X.Q., Chen, S.Y., Ma, X., Chen, Z.H., et al., 2011. Gliadin analysis of
Elymus nutans Griseb. from the Qinghai-Tibetan Plateau and Xinjiang, China.
Grassl. Sci. 57, 127e134.
Nagaki, K., Tsujimoto, H., Isono, K., Sasakuma, T., 1995. Molecular characterization of
a tandem repeat, Afa-family, and distribution among Triticeae. Genome 38,
Ørgaard, M., Heslop-Harrison, J.S., 1994. Investigation of genome relationships between
Leymus, Psathyrostachys and Hordeum inferred from genomic DNA: DNA
in situ hybridization. Ann. Bot. 73, 195e203.
Pedersen, C., Rasmussen, S.K., Linde-Laursen, I., 1996. Genome and chromosome
identification in cultivated barley and related species of the Triticeae (Poaceae)
by in situ hybridization with the GAA-satellite sequence. Genome 39 (1),
Rayburn, A.L., Gill, B.S., 1986. Isolation of a D-genome specific repeated DNA
sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 4 (2), 102e109.
Sun, G., 2014. Molecular phylogeny revealed complex evolutionary process in Elymus
species. J. Syst. Evol. 52 (6), 706e711.
Tsujimoto, H., Mukai, Y., Akagawa, K., Nagaki, K., Fujigaki, J., Yamamoto, M.,
Sasakuma, T., 1997. Identification of individual barley chromosomes based on
repetitive sequences: conservative distribution of Afa-family repetitive sequences
on the chromosomes of barley and wheat. Genes Genet. Syst. 72 (5),
Wang, Q., Liu, H., Gao, A., Yang, X., Liu, W., Li, X., et al., 2012. Intergenomic rearrangements
after polyploidization of kengyilia thoroldiana (poaceae: Triticeae)
affected by environmental factors. Plos One 7 (2), e31033.
Xiong, Z.Y., Gaeta, R.T., Pires, J.C., 2011. Homoeologous shuffling and chromosome
compensation maintain genome balance in resynthesized allopolyploid Brassica
napus. Proc. Natl. Acad. Sci. U. S. A. 108, 7908e7913.
Yan, X.B., Guo, Y.X., Liu, F.Y., Zhao, C., Liu, Q.L., Lu, B.R., 2010. Population structure
affected by excess gene flow in self pollinating Elymus nutans and E. burchanbuddae
(Triticeae: Poaceae). Popul. Ecol. 52, 233e241.
Yang, C.R., Zhang, H.Q., Zhao, F.Q., Liu, X.Y., Fan, X., Sha, L.N., et al., 2015. Genome
constitution of Elymus tangutorum (poaceae: triticeae) inferred from meiotic
pairing behavior and genomic in situ hybridization. J. Syst. Evol. 53 (6),
Zhang, J.B., Bai, S.Q., Zhang, X.Q., Ma, X., Yan, J.J., Zhang, C.B., You, M.H., 2009. Study
on ear characters of Elymus nutans Griseb. in the northwestern plateau of
Sichuan province. J. Sichuan Univ. Nat. Sci. Ed. 46, 1505e1509
Similar articles

Comment for this article:

Copyright by Plant Diversity