Plant Diversity 2017, 39(03) 154-159 DOI:   http://dx.doi.org/10.1016/j.pld.2017.05.004  ISSN: 2096-2703 CN: 53-1233

Current Issue | Archive | Search                                                            [Print]   [Close]
Review
Information and Service
This Article
Supporting info
PDF(3634KB)
[HTML]
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Oenothera glazioviana
Capitate glandular trichomes
Laser microdissection
4-Hydroxy-4-methylpentan-2-one
Defensive functions
Authors
PubMed

Localization of a defensive volatile 4-hydroxy-4-methylpentan-2-one in the capitate glandular trichomes of Oenothera glazioviana

Yanyun Tan a, b, c, Desen Li a, b, c, Juan Hua a, b, c, Shihong Luo a, b, Yan Liu a, b, **, Shenghong Li a, b, *

a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
b Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, PR China
c University of Chinese Academy of Sciences, Beijing 100049, PR China

Abstract

Glandular trichomes of plants produce a wide variety of secondary metabolites which are considered as major defensive chemicals. The capitate glandular trichomes of Oenothera glazioviana (Onagraceae) were collected with laser microdissection and analyzed by gas chromatographyemass spectrometry. The volatile compound 4-hydroxy-4-methylpentan-2-one (1) was identified. We found that compound 1 displays antimicrobial, insecticidal, and phytotoxic activities. These results suggest that compound 1 might function as a defensive compound in the capitate glandular trichomes of O. glazioviana against pathogens, insect herbivores, and presumably competitive plants as well.

Keywords Oenothera glazioviana   Capitate glandular trichomes   Laser microdissection   4-Hydroxy-4-methylpentan-2-one   Defensive functions  
Received 2017-02-28 Revised  Online: 2017-05-17 
DOI: http://dx.doi.org/10.1016/j.pld.2017.05.004
Fund:the National Science Fund for Distinguished Young Scholars (31525005), the NSFCYunnan Joint Fund (U1202263), the National Basic Research Program of China (973 Program) on Biological Control of Key Crop Pathogenic Nematodes (2013CB127505), and the “Hundred Talents Program” of the Chinese Academy of Sciences (awarded to S.-H. Li)
Corresponding Authors:
Email:
About author:

References:
Alvarez, S.L., Cortadi, A., Juarez, M.A., Petenatti, E., Tomi, F., Casanova, J., van
Baren, C.M., Zacchino, S., Vila, R., 2012. ()-5,6-Dehydrocamphor from the
antifungal essential oil of Zuccagnia punctata. Phytochem. Lett. 5, 194e199.
Benlarbi, K.H., Elmtili, N., Macías, F.A., Galindo, J.C.G., 2014. Influence of in vitro
growth conditions in the production of defence compounds in Mentha pulegium.
Phytochem. Lett. 8, 233e244.
Caissard, C.J., Thomas, O., Claire, D., Sabine, P., Pierre-Philippe, G., Arthur, A.,
Nadine, V., Sandrine, M., Florence, N., Jean-Louis, M., 2012. Extracellular localization
of the diterpene sclareol in clary sage (Salvia sclarea L., Lamiaceae). Plos
One 7, 248e253.
Campbell, E.J., Manners, J.M., 2003. Pathogen-responsive expression of a putative
ATP-binding cassette transporter gene conferring resistance to the diterpenoid
sclareol is regulated by multiple defense signaling pathways in Arabidopsis.
Plant Physiol. 133, 1272e1284.
Elsawi, S.A., Motawae, H.M., Ali, A.M., 2007. Chemical composition, cytotoxic activity
and antimicrobial activity of essential oils of leaves and berries of Juniperus
phoenicea L. grown in Egypt. Afr. J. Tradit. Complement. Altern. Med. 4,
417e426.
Epstein, W., Gerber, K., Karler, R., 1964. The hypnotic constituent of Stipa vaseyi,
sleepy grass. Experientia 20, 390e391.
Gang, D.R., Wang, J., Dudareva, N., Lewinsohn, E., Pichersky, E., 2001. An investigation
of the storage and biosynthesis of phenylpropenes in sweet basil. Plant
Physiol. 125, 539e555.
Gong, Z.W., Gong, S.W., 1990. The synthesis of diacetone alcohol. Fine Chem.
Intermed. 2, 57e58.
Greiner, S., Wang, X., Rauwolf, U., Silber, M.V., Mayer, K., Meurer, J., Haberer, G.,
Herrmann, R.G., 2008. The complete nucleotide sequences of the five genetically
distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence
evaluation and plastome evolution. Nucleic Acids Res. 36, 2366e2378.
Guo, P., Wang, T., Liu, Y., Xia, Y., Wang, G., Shen, Z., Chen, Y., 2014. Phytostabilization
potential of evening Primrose (Oenothera glazioviana) for copper-contaminated
sites. Environ. Sci. Pollut. Res. 21, 631e640.
Happyana, N., Agnolet, S., Muntendam, R., Dam, A.V., Schneider, B., Kayser, O., 2013.
Analysis of cannabinoids in laser-microdissected trichomes of medicinal
Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87, 51e59.
Harborne, J.B., 1993. Herbivores, their interactions with secondary metabolites.
Phytochemistry 33, 482e252.
Table 1
Antimicrobial activities of 4-hydroxy-4-methylpentan-2-one.
Test organism Antimicrobial activities/IC50 (mM)
4-Hydroxy-4-methylpentan-2-one Positive
control
Bacteriaa
Bacillu subtilis 0.51 ± 0.29 <0.0005
Micrococcus luteus 0.16 ± 0.80 <0.0005
Staphylococcus
aureus
0.13 ± 0.89 <0.0005
Fungib
Rhizoctonia solani 0.15 ± 0.82 0.06 ± 0.008
Colletotrichum litchi NA <0.5
C. gloeosporioides NA <0.5
Aspergillus niger 0.10 ± 0.99 0.004 ± 0.19
a Ampicillin was used as a positive control.
b Nystatin was used as a positive control; NA ¼ not active.
Y. 158 Tan et al. / Plant Diversity 39 (2017) 154e159
Ibbotson, A., Kennedy, J.S., 1950. The distribution of aphid infestation in relation to
leaf age. Ann. Appl. Biol. 37, 651e679.
Igoli, J.O., Onyiriuka, S.O., Letzel, M.C., Nwaji, M.N., Gray, A.I., 2008. Cassane diterpenoids
from Lonchocarpus laxiflorus. Nat. Product. Commun. 3, 5e10.
Jasinski, M.S.Y., Degand, H., Purnelle, B., Marchand, B.J., Boutry, M., 2001. A plant
plasma membrane ATP binding cassette-type transporter is involved in antifungal
terpenoid secretion. Plant Cell 13, 1095e1107.
Kim, E.S., Mahlberg, P.G., 1997. Immunochemical localization of tetrahydrocannabinol
(THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am. J.
Bot. 84, 336e342.
Kitulagodage, M., Astheimer, L.B., Buttemer, W.A., 2008. Diacetone alcohol, a
dispersant solvent, contributes to acute toxicity of a fipronil-based insecticide
in a passerine bird. Ecotoxicol. Environ. Saf. 71, 597e600.
Lewis, R.J., 2004. Sax's Dangerous Properties of Industrial Materials. John Wiley &
Sons, Inc, Canada, 1103e1103.
Li, C.H., Jing, S.X., Luo, S.H., Shi, W., Hua, J., Liu, Y., Li, X.N., Schneider, B.,
Gershenzon, J., Li, S.H., 2013. Peltate glandular trichomes of Colquhounia coccinea
var. mollis harbor a new class of defensive sesterterpenoids. Org. Lett. 15,
1694e1697.
Li, C.H., Liu, Y., Hua, J., Luo, S.H., Li, S.H., 2014. Peltate glandular trichomes of Colquhounia
seguinii harbor new defensive clerodane diterpenoids. J. Integr. Plant
Biol. 56, 928e940.
Liu, S., 1997. Oenothera biennis seed rich in g-linolenic acid. Zhongcaoyao 28,
105e106.
Luo, S.H., Luo, Q., Niu, X.M., Xie, M.J., Zhao, X., Schneider, B., Gershenzon, J., Li, S.H.,
2010. Glandular trichomes of Leucosceptrum canum harbor defensive sesterterpenoids.
Angew. Chem. Int. Ed. 49, 4471e4475.
Massouh, A.S.J., Yaneva, R.L., Ulbricht, J.E.S., Zupok, A., Johnson, M.T., Wright, S.,
Pellizzer, T., Sobanski, J., Bock, R., Greiner, S., 2016. Spontaneous chloroplast
mutants mostly occur by replication slippage and show a biased pattern in the
plastome of Oenothera. Plant Cell 28, 911e929.
Metcalfe, D.J., 2005. Hedera helix L. J. Ecol. 93, 632e648.
Mgode, G.F., Weetjens, B.J., Nawrath, T., Lazar, D., Cox, C., Jubitana, M., Mahoney, A.,
Kuipers, D., Machang, R.S., Weiner, J., 2012. Mycobacterium tuberculosis volatiles
for diagnosis of tuberculosis by cricetomys rats. Tuberculosis 92, 535e542.
Nyasembe, V.O., Torto, B., 2014. Volatile phytochemicals as mosquito semiochemicals.
Phytochem. Lett. 8, 196e201.
Ohloff, G., 1994. The fascination of odors and their chemical perspectives. Scent
Fragr. 8, 238e241.
€Ozcan, M.M., Chalchat, J.C., Bagci, Y., Dural, H., Figueredo, G., Savran, A., 2011.
Chemical composition of essential oils of Phlomis grandiflora H.S. Thomposon
var. grandiflora flowers and leaves of Turkish origin. J. Food Biochem. 35,
125e132.
Pelc, M., Kosakowska, O., Weglarz, Z., Przybyl, J., Geszprych, A., 2005. Sterols and
fatty acids in the seeds of evening Primrose (Oenothera sp.) and willow herb
(Epilobium sp.). Herba Pol. 51, 20e24.
Peng, T.Y., Don, M.M., 2013. Antifungal activity of in-vitro grown Earliella scabrosa, a
malaysian fungus on selected wood-degrading fungi of rubberwood. J. Phys. Sci.
24, 21e33.
Ramirez, A.M., Saillard, N., Yang, T., Franssen, M.C.R., Bouwmeester, H.J.,
Jongsma, M.A., 2013. Biosynthesis of sesquiterpene lactones in pyrethrum
(Tanacetum cinerariifolium). Plos One 8, 59e59.
Rauwolf, U., Golczyk, H., Meurer, J., Herrmann, R.G., Greiner, S., 2008. Molecular
marker systems for Oenothera genetics. Genetics 180, 1289e1306.
Schilmiller, A.L., Last, R.L., Pichersky, E., 2008. Harnessing plant trichome
biochemistry for the production of useful compounds. Plant J. 54, 702e711.
Sharma, S., Sangwan, N.S., Sangwan, R.S., 2003. Developmental process of essential
oil glandular trichome collapsing in menthol mint. Curr. Sci. 84, 544e550.
Sholes, O.D.V., 1984. Responses of arthropods to the development of goldenrod
inflorescences (Solidago: Asteraceae). Am. Midl. Nat. 112, 1e14.
Smyth Jr., H.F., Carpenter, C.P., 1948. Further experience with the range finding test
in the industrial toxicology laboratory. J. Ind. Hyg. Toxicol. 30, 63e68.
Stonemetz, D., 2008. A review of the clinical efficacy of evening Primrose. Holist.
Nurs. Pract. 22, 171e174.
Turlings, T.C., Loughrin, J.H., Mccall, P.J., R€ose, U.S., Lewis,W.J., Tumlinson, J.H., 1995.
How caterpillar-damaged plants protect themselves by attracting parasitic
wasps. Proc. Natl. Acad. Sci. U. S. A. 92, 4169e4174.
Veronese, P., Li, X., Niu, X., Weller, S.C., Bressan, R.A., Hasegawa, P.M., 2001.
Bioengineering mint crop improvement. Plant Cell Tissue Organ Cult. 64,
133e144.
Wagner, G.J., Wang, E., Shepherd, R.W., 2004. New approaches for studying and
exploiting an old protuberance, the plant trichome. Ann. Bot. 93, 3e11.
Wang, G., 2014. Recent progress in secondary metabolism of plant glandular trichomes.
Plant Biotechnol. 31, 353e361.
Wang, Y., Luo, S.H., Hua, J., Liu, Y., Jing, S.X., Li, X.N., Li, S.H., 2015. Capitate glandular
trichomes of Paragutzlaffia henryi harbor new phytotoxic labdane diterpenoids.
J. Agric. Food Chem. 63, 10004e10012.
Wiegand, I., Hilpert, K., Hancock, R.E., 2008. Agar and broth dilution methods to
determine the minimal inhibitory concentration (MIC) of antimicrobial substances.
Nat. Protoc. 3, 163e175.
Williams, W.G., Kennedy, G.G., Yamamoto, R.T., Thacker, J.D., Bordner, J., 1980. 2-
Tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon
hirsutum f. glabratum. Science 207, 888e889.
Yu, G., Nguyen, T.T., Guo, Y., Schauvinhold, I., Auldridge, M.E., Bhuiyan, N., Ben, I.I.,
Iijima, Y., Fridman, E., Noel, J.P., 2010. Enzymatic functions of wild tomato
methylketone synthases 1 and 2. Plant Physiol. 154, 67e77.
Zolotovich, G.D., Mikhailova-Koleva, S., Georgieva, M.V., 1974. Biological effect of
some alcohols isolated from concrete of fresh water cultivated microalgae. In:
6th Int. Congr. Essent. Oils,
[Pap.]; Allured Publ. Corp.: Oak Park, IL (CAN 84:
55230); 6, pp. 22e26.
Similar articles

Comment for this article:

Copyright by Plant Diversity