Barrett, C.F., Davis, J.I., Leebens-Mack, J., et al., 2013. Plastid genomes and deep relationships among the commelinids monocot angiosperms. Cladistics 29, 65-87. Choi, H.I., Kim, N.H., Lee, J., et al., 2013. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags. Genet. Resour. Crop Evol. 60, 1377-1387. Choi, H.I., Waminal, N.E., Park, H.M., et al., 2014. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J. 77, 906-916. Choi, H.K., Wen, J., 2000. A phylogenetic analysis of Panax (Araliaceae):integrating cp DNA restriction site and nuclear rDNA ITS sequence data. Plant Syst. Evol. 224, 109-120. Chumley, T.W., Palmer, J.D., Mower, J.P., et al., 2006. The complete chloroplast genome sequence of Pelargonium hortorum:organizationand evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 23, 2175-2190. Cosner, M.E., Jasen, P.K., Palmer, J.D., et al., 1997. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanuceae):insertions/deletions, and several repeat families. Curr. Genet. 31, 419-429. Dong, W.P., Xu, C., Li, C.H., et al., 2015. Ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5, 8348. Downie, S.R., Jansen, R.K., 2015. A comparative analysis of whole plastid genomes from the Apiales:expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst. Bot. 40, 336-351. Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA:computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. Han, Z., Li, W., Liu, Y., et al., 2016. The complete chloroplast genome of North American ginseng, Panax quinquefolius. Mitochondr. DNA 27, 3496. Hollingsworth, P.M., Graham, S.W., Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS One 6, e19254. Huang, H., Shi, C., Liu, Y., et al., 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing:genome structure and phylogenetic relationships. BMC Evol. Biol. 14, 151. Huang, Y., Li, X., Yang, Z., et al., 2016. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Front. Plant Sci. 7, 1797. Jansen, R.K., Cai, Z., Raubeson, L.A., et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. 104, 19369-19374. Katoh, K., Misawa, K., Kuma, K.I., et al., 2002. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. Kim, K.J., Lee, H.L., 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-261. Kress, W.J., Wurdack, K.J., Zimmer, E.A., et al., 2005. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. 102, 8369-8374. Lanfear, R., Calcott, B., Ho, S.Y.W., et al., 2012. PartitionFinder:combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695-1701. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. Lee, C.H., Wen, J., 2004. Phylogeny of Panax using chloroplast trnC-trnD intergenic region and utility of trnC-trnD in interspecific studies of plants. Mol. Phylogenet. Evol. 31, 894-903. Li, R., Ma, P.F., Wen, J., et al., 2013. Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. PLoS One 8, e78568. Librado, P., Rozas, J., 2009. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. Liu, L.X., Li, R., Worth, J., et al., 2017. The complete chloroplast genome of Chinese bayberry (Morella rubra, Myricaceae):implications for understanding the evolution of Fagales. Front. Plant Sci. 8, 968. Lohse, M., Drechsel, O., Bock, R., 2007. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267-274. Millen, R.S., Olmstead, R.G., Adams, K.L., et al., 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13, 645-658. Moore, M.J., Bell, C.D., Soltis, P.S., et al., 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. 104, 19363-19368. Moore, M.J., Soltis, P.S., Bell, C.D., et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. 107, 4623-4628. Nguyen, B., Kim, K., Kim, Y.C., et al., 2017. The complete chloroplast genome sequence of Panax vietnamensis Ha et Grushv (Araliaceae). Mitochondr. DNA 28, 85-86. Nock, C.J., Waters, D.L., Edwards, M.A., et al., 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J. 9, 328-333. Nurk, S., Bankevich, A., Antipov, D., et al., 2013. Assembling genomes and mini-meta genomes from highly chimeric reads. In:Deng, M., Jiang, R., Sun, F., et al. (Eds.), Research in Computational Molecular Biology, Lecture Notes in Computer Science. Springer, Heidelberg, pp. 158-170. Parks, M., Cronn, R., Liston, A., 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 7, 1. Patel, R.K., Jain, M., 2012. NGS QC Toolkit:a toolkit for quality control of next generation sequencing data. PLoS One 7, e30619. Philippe, H., Brinkmann, H., Lavrov, D.V., et al., 2011. Resolving difficult phylogenetic questions:why more sequences are not enough. PLoS Biol. 9, e1000602. Plunlett, G.M., Downie, S.R., 2000. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst. Bot. 25, 648-667. Raubeson, L.A., Jansen, R.K., 2005. Chloroplast genomes of plants. In:Henry, R.J.(Ed.), Plant Diversity and Evolution:Genotypic and Phenotypic Variation in Higher Plants. CABI, Cambridge, pp. 45-68. Rokas, A., Carroll, S.B., 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22, 1337-1344. Ruhsam, M., Rai, H.S., Mathews, S., et al., 2015. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 15, 1067-1078. Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686-W689. Shaw, J., Shafer, H.L., Leonard, O.R., et al., 2014. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms:the tortoise and the hare IV. Am. J. Bot. 101, 1987-2004. Shi, F.X., Li, M.R., Li, Y.L., et al., 2015. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae). BMC Plant Biol. 15, 297. Stamatakis, A., 2006. RAxML-VI-HPC:maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. Stull, G.W., de Stefano, R.D., Soltis, D.E., et al., 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Am. J. Bot. 102, 1794-1813. Wen, J., 1999. Evolution of eastern Asian and eastern North American disjunct pattern inflowering plants. Annu. Rev. Ecol. Syst. 30, 421-455. Wen, J., Zimmer, E.A., 1996. Phylogeny and biogeography of Panax L. (the ginseng genus):inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phylogenet. Evol. 6, 167-177. Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualisation of de novo genome assemblies. Bioinformatics 31, 3350-3352. Wicke, S., Schneeweiss, G.M., Depamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants:gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297. Wiens, J.J., 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52, 528-538. Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255. Xiang, Q.B., Lowry, P.P., 2007. Panax. In:Wu, Z.Y., Raren, P.H. (Eds.), Flora of China, vol. 13. Science Press, Beijing, pp. 489-491. Yang, Z., Ji, Y., 2017. Comparative and phylogenetic analyses of the complete chloroplast genomes of three Arcto-Tertiary relicts:Camptotheca acuminata, Davidia involucrata, and Nyssa sinensis. Front. Plant Sci. 8, 1536. Yang, C.R., Zhou, J., Tanaka, O., 1988. Chemotaxonomy of Panax and its application of medical resources. Acta Bot. Yun (Suppl. I), 47-62. Yang, J.B., Li, D.Z., Li, H.T., 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024-1031. Yang, J.B., Tang, M., Li, H.T., et al., 2013. Complete chloroplast genome of the genus Cymbidium:lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 13, 1. Yang, Z., Nielsen, R., 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32-43. Yao, X., Tan, Y.H., Liu, Y.Y., et al., 2016. Chloroplast genome structure in Ilex (Aquifoliaceae). Sci. Rep. 6, 28559. Yi, T., Lowry Ⅱ, P.P., Plunkett, G.M., et al., 2004. Chromosomal evolution in Araliaceae and close relatives. Taxon 53, 987-1005. Zhang, D., Li, W., Gao, C., et al., 2016. The complete plastid genome sequence of Panax notoginseng, a famous traditional Chinese medicinal plant of the family Araliaceae. Mitochondr. DNA 27, 3438. Zhao, Y., Yin, J., Guo, H., et al., 2015. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front. Plant Sci. 5, 696. Zhou, T., Wang, J., Jia, Y., et al., 2018. Comparative chloroplast genome analyses of species in gentiana section Cruciata (Gentianaceae) and the development of authentication markers. Int. J. Mol. Sci. 19, 1962. Zhu, S., Fushimi, H., Cai, S., et al., 2003. Phylogenetic relationship in the genus Panax:inferred from chloroplast trnK gene and nuclear 18S rRNA gene sequences. Planta Med. 69, 647-653. Zuo, Y., Chen, Z., Kondo, K., et al., 2011. DNA barcoding of Panax species. Planta Med. 77, 182-187. Zuo, Y.J., Wen, J., Ma, J.S., et al., 2015. Evolutionary radiation of the Panax bipinnatifidus species complex (Araliaceae) in the Sino-Himalayan region of eastern Asia as inferred from AFLP analysis. J. Syst. Evol. 53, 210-220. Zuo, Y.J., Wen, J., Zhou, S.L., 2017. Intercontinental and intracontinental biogeography of the eastern Asianeeastern North American disjunct Panax (the ginseng genus, Araliaceae), emphasizing its diversification processes in eastern Asia. Mol. Phylogenet. Evol. 117, 60-74. |