Abbasov, M., Akparov, Z., Gross, T., et al., 2018. Genetic relationship of diploid wheat(Triticum spp.) species assessed by SSR markers. Genet. Resour. Crop Evol. 65, 1441-1453. https://doi.org/10.1007/s10722-018-0629-2. An, M.T., 2005. Present status of the natural resource of camellias in Guizhou Province. Guizhou Forestry Sci. Tech. 33, 26-29. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036. Bhattacharyya, P., Kumaria, S., 2015. Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA. Plant Systemat. Evol. 301, 201-210. https://doi.org/10.1007/s00606-014-1065-1. Birky, C.W., 2008. Uniparental inheritance of organelle genes. Curr. Biol. 18, R692-R695. https://doi.org/10.1016/j.cub.2008.06.049. Chen, H.L., Lu, X.L., Ye, Q.Q., et al., 2019. Genetic diversity and structure of three yellow Camellia species based on SSR markers. Guihaia 39, 318-327. Chung, M.Y., López-Pujol, J., Son, S., et al., 2018. Patterns of genetic diversity in rare and common orchids focusing on the Korean peninsula: implications for conservation. Bot. Rev. 84, 1-25. https://doi.org/10.1007/s12229-017-9190-5. Coates, D.J., Carstairs, S., Hamley, V.L., 2003. Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). Am. J. Bot. 90, 997-1008. https://doi.org/10.3732/ajb.90.7.997. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001-2014. Doyle, J.J., Doyle, J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12, 39-40. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. https://doi.org/10.1093/nar/gkh340. Ellstrand, N.C., Elam, D.R., 1993. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Systemat. 2, 217-242. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x. Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491. Gao, Y., Ai, B., Kong, H., et al., 2015. Geographical pattern of isolation and diversification in karst habitat islands: a case study in the Primulina eburnea complex.J. Biogeogr. 42, 2131-2144. https://doi.org/10.1111/jbi.12576. Huang, C.-C., Hung, K.-H., Hwang, C.-C., et al., 2011. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae)inferred from chloroplast and nuclear DNA. BMC Evol. Biol. 11, 108. https://doi.org/10.1186/1471-2148-11-108. Levy, E., Byrne, M., Coates, D.J., et al., 2016. Contrasting influences of geographic range and distribution of populations on patterns of genetic diversity in two sympatric Pilbara acacias. PloS One 11, e0163995. https://doi.org/10.1371/journal.pone.0163995. Li, X., Wang, J., Fan, Z., et al., 2019. Genetic diversity in the endangered Camellia nitidissima assessed using transcriptome-based SSR markers. Trees (Berl.) 34, 543-552. https://doi.org/10.1007/s00468-019-01935-1. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. https://doi.org/10.1093/bioinformatics/btp187. Liu, Y., Yang, S., Ji, P., et al., 2012. Phylogeography of Camellia taliensis (Theaceae)inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol. Biol. 12, 92. https://doi.org/10.1186/1471-2148-12-92. Liufu, Y.-Q., Peng, G.-Q., Lu, Y.-B., et al., 2014. Development and characterization of 38 microsatellite markers for Camellia flavida based on transcriptome sequencing. Conserv. Genet. Resour. 6, 1007-1010. https://doi.org/10.1007/s12686-014-0270-0. Logan, S.A., Phuekvilai, P., Sanderson, R., et al., 2019. Reproductive and population genetic characteristics of leading-edge and central populations of two temperate forest tree species and implications for range expansion. For. Ecol.Manage. 433, 475-486. https://doi.org/10.1016/j.foreco.2018.11.024. Lowe, A.J., Boshier, D., Ward, M., et al., 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95, 255-273. https://doi.org/10.1038/sj.hdy.6800725. Lu, Y.-B., Liufu, Y.-Q., Peng, G.-Q., et al., 2014. Development of 21 microsatellite primers for Camellia pingguoensis (Theaceae) using 454 sequencing. Conserv.Genet. Resour. 6, 791-793. https://doi.org/10.1007/s12686-014-0221-9. Lu, X.L., Chen, H.L., Liang, X.Y., et al., 2019. Genetic diversity of peripheral population of Camellia nitidissima and variety microcarpa. Mol. Plant Breed. 17, 301-306. Lu, X., Chen, H., Wei, S., et al., 2020. Chloroplast and nuclear DNA analyses provide insight into the phylogeography and conservation genetics of Camellia nitidissima (Theaceae) in southern Guangxi, China. Tree Genet. Genomes 16, 8.https://doi.org/10.1007/s11295-019-1390-1. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209-220. Miao, C.-Y., Yang, J., Mao, R.-L., et al., 2017. Phylogeography of Achyranthes bidentata(Amaranthaceae) in China's warm-temperate zone inferred from chloroplast and nuclear DNA: insights into population dynamics in response to climate change during the Pleistocene. Plant Mol. Biol. Rep. 35, 166-176. https://doi.org/10.1007/s11105-016-1013-z. Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x. Peng, G.Q., Tang, S.Q., 2017. Fine-scale spatial genetic structure and gene flow of Camellia flavida, a shade-tolerant shrub in karst. Acta Ecol. Sin. 37, 7313-7323. Pons, O., Petit, R.J., 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237-1245. Qin, H.N., Yang, Y., Dong, S.Y., et al., 2017. Threatened species list of China's higher plants. Biodivers. Sci. 25, 696-744. Ramanatha Rao, V., Hodgkin, T., 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult. 68, 1-19.https://doi.org/10.1023/A:1013359015812. Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223-225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x. Rosenberg, N.A., Burke, T., Elo, K., et al., 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159, 699-713. Solórzano, S., Arias, S., Dávila, P., 2016. Genetics and conservation of plant species of extremely narrow geographic range. Diversity 8, 31. https://doi.org/10.3390/d8040031. Spooner, D.M., Núñez, J., Trujillo, G., et al., 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. U. S. A. 104, 19398-19403.https://doi.org/10.1073/pnas.0709796104. Sun, S.-G., Huang, Z.-H., Chen, Z.-B., et al., 2017. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). Am. J. Bot. 104, 468-476. https://doi.org/10.3732/ajb.1600428. Ueno, S., Tomaru, N., Yoshimaru, H., et al., 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 9, 647-656. Wei, S.-J., Lu, Y.-B., Ye, Q.-Q., et al., 2017. Population genetic structure and phylogeography of Camellia flavida (Theaceae) based on chloroplast and nuclear DNA sequences. Front. Plant Sci. 8, 718. https://doi.org/10.3389/fpls.2017.00718. Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97-159. Xi, Z., Ruhfel, B.R., Schaefer, H., et al., 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc.Natl. Acad. Sci. U. S. A. 109, 17519-17524. https://doi.org/10.1073/pnas.1205818109. Xie, D.Z., Ya, Z.G., Han, J.Y., et al., 2014. Study of distribution and protection strategies of Camellia tianeensis. J. Green Sci. Technol. 89-91. Yang, Y., Pan, Y., Gong, X., et al., 2010. Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genet. Resour. Crop Evol. 57, 1239-1248. https://doi.org/10.1007/s10722-010-9571-7. Yao, M.-Z., Ma, C.-L., Qiao, T.-T., et al., 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet.Genomes 8, 205-220. https://doi.org/10.1007/s11295-011-0433-z. Yoichi, W., Tomaru, N., 2014. Patterns of geographic distribution have a considerable influence on population genetic structure in one common and two rare species of Rhododendron (Ericaceae). Tree Genet. Genomes 10, 827-837. https://doi.org/10.1007/s11295-014-0723-3. Zaya, D.N., Molano-Flores, B., Feist, M.A., et al., 2017. Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae). Conserv. Genet. 18, 171-180. https://doi.org/10.1007/s10592-016-0891-9. Zhao, D., Yang, J., Yang, S., et al., 2014. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.BMC Plant Biol. 12. |