Plant Diversity ›› 2022, Vol. 44 ›› Issue (01): 30-38.DOI: 10.1016/j.pld.2021.04.007
Wei-Bo Du, Peng Jia, Guo-Zhen Du
收稿日期:
2020-12-16
修回日期:
2021-04-24
出版日期:
2022-02-25
发布日期:
2022-03-12
通讯作者:
Guo-Zhen Du
基金资助:
Wei-Bo Du, Peng Jia, Guo-Zhen Du
Received:
2020-12-16
Revised:
2021-04-24
Online:
2022-02-25
Published:
2022-03-12
Contact:
Guo-Zhen Du
Supported by:
摘要: Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.
Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains[J]. Plant Diversity, 2022, 44(01): 30-38.
Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains[J]. Plant Diversity, 2022, 44(01): 30-38.
Allen, A.P., Gillooly, J.F., 2006. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947-954. APGIV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20. Bañares-de-Dios, G., Macía, M.J., Cerda, I.G.L., et al., 2020. Linking patterns and processes of tree community assembly across spatial scales in tropical montane forests. Ecology 101, e03058. Boufford, D.E., 2014. Biodiversity hotspot:China's hengduan mountains. Arnoldia 72, 24-35. Brown, J.H., Gillooly, J.F., Allen, A.P., et al., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771-1789. Burns, J.H., Strauss, S.Y., 2011. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. U.S.A. 108, 5302-5307. Cardillo, M., 2011. Phylogenetic structure of mammal assemblages at large geographical scales:linking phylogenetic community ecology with macroecology. Phil. Trans. Biol. Sci. 366, 2545-2553. Charles, G.W., Halina, M., Lehman, C., et al., 2010. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565-577. Chen, Y.S., Deng, T., Zhou, Z., et al., 2018. Is the East Asian flora ancient or not? Natl.Sci. Rev. 6, 1-13. Chu, C.J., Wang, Y.S., Liu, Y., et al., 2017. Advances in species coexistence theory. Biodivers. Sci. 25, 345-354. Currie, D.J., Mittelbach, G.G., Cornell, H.V., et al., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol.Lett. 7, 1121-1134. Deng, T., Wu, F.X., Wang, S.Q., et al., 2019. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau. Chin. Sci.Bull. 64, 2894-2906. Deng, T., Zhang, J.W., Meng, Y., et al., 2017. Role of the Qinghai-Tibetan Plateau uplift in the Northern Hemisphere disjunction:evidence from two herbaceous genera of Rubiaceae. Sci. Rep. 7, 13411. Ding, W.N., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369, 578-581. Ebersbach, J., Muellner-Riehl, A.N., Michalak, I., et al., 2016. In and out of the Qinghai-Tibet Plateau:divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900-910. Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10. Faith, D.P., Reid, C.A.M., Hunter, J., 2004. Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conserv. Biol. 18, 255-261. Favre, A., Michalak, I., Chen, C.H., et al., 2016. Out-of-Tibet:the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967-1978. Favre, A., Päckert, M., Pauls, S.U., et al., 2015. The role of the uplift of the QinghaiTibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. Grierson, C.S., Barnes, S.R., Chase, M.W., et al., 2011. One hundred important questions facing plant science research. New Phytol. 192, 6-12. Hawkins, B.A., Porter, E.E., 2003. Relative influence of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecol. Biogeogr. 12, 475-481. HilleRisLambers, J., Adler, P.B., Harpole, W.S., et al., 2012. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227-248. Huang, J.H., Chen, B., Liu, C.R., et al., 2012. Identifying hotspots of endemic woody seed plant diversity in China. Divers. Distrib. 18, 673-688. Huang, J.H., Huang, J.H., Liu, C.R., et al., 2016. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol. Conserv. 198, 104-112. Hubbell, S.P. (Ed.), 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton and Oxford. Hubbell, S.P., 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166-172. Kraft, N.J.B., Cornwell, W.K., Webb, C.O., et al., 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271-283. Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante:R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. Kerr, J.T., Packer, L., 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252-254. Li, D.Z., Chen, Z.D., Wang, H., et al. (Eds.), 2018a. A Dictionary of the Families and Genera of Chinese Vascular Plants. Science Press, Beijing. Li, R., Qian, L.S., Sun, H., 2018b. Current progress and future prospects in phylofloristics. Plant Divers. 40, 141-146. Li, X.H., Zhu, X.X., Niu, Y., et al., 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains region, southwest China. J. Systemat. Evol. 52, 280-288. Li, X.H., Sun, H., 2017. Phylogenetic pattern of alpine plants along latitude and longitude in Hengduan Mountains region. Plant Divers. 39, 37-43. Liu, J., Luo, Y.H., Li, D.Z., et al., 2017. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions:retrospect and prospect. Biodivers. Sci. 25, 163-174. Liu, J.Q., Duan, Y.W., Hao, G., et al., 2014. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J. Systemat. Evol. 52, 241-249. Liu, S.W. (Ed.), 1996-1999. Flora of Qinghai, vols. 1-5. Qinghai People's Publishing House, Xining. López-Pujol, J.L., Zhang, F.M., Sun, H.Q., et al., 2011. Centres of plant endemism in China:places for survival or for speciation? J. Biogeogr. 38, 1267-1280. Lu, L.M., Mao, L.F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. Ma, K.P., 2017. Frontiers in biodiversity science:insular biogeography, community assembly and application of big data. Biodivers. Sci. 25, 343-344. Mao, L.F., Chen, S.B., Zhang, J.L., et al., 2013. Vascular plant diversity on the roof of the world:spatial patterns and environmental determinants. J. Systemat. Evol. 51, 371-381. Miller, E.T., Farine, D.R., TrisosE, C.H., 2017. Phylogenetic community structure metrics and null models:a review with new methods and software. Ecography 40, 461-477. Mittelbach, G.G., Schemske, D.W., 2015. Ecological and evolutionary perspectives on community assembly. Trends Ecol. Evol. 30, 241-247. Mittelbach, G.G., Schemske, D.W., Cornell, H.V., et al., 2007. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography. Ecol. Lett. 10, 315-331. Montoya, D., Rodríguez, M.A., Zavala, M.A., et al., 2007. Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography 30, 173-182. Muellner-Riehl, A.N., 2019. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Front. Plant Sci. 10, 195. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. Niu, H.Y., Wang, Z.F., Lian, J.Y., et al., 2011. New progress in community assembly:community phylogenetic structure combining evolution and ecology. Biodivers.Sci. 19, 275-283. Owen, L.A., Caffee, M.W., Finkel, R.C., et al., 2008. Quaternary glaciation of the Himalayan-Tibetan orogen. J. Quat. Sci. 23, 513-531. Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen. Quat. Sci. Rev. 88, 14-54. Pan, Y.S. (Ed.), 2000. Geological Formation and Evolution of the Karakorum-Kunlun Mountains. Science Press, Beijing. Patino, J., Whittaker, R.J., Borges, P.A.V., et al., 2017. A roadmap for island biology:50 fundamental questions after 50 years of the theory of island biogeography. J. Biogeogr. 44, 963-983. Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. Qiu, Y.X., Fu, C.X., Comes, H.P., 2011. Plant molecular phylogeography in China and adjacent regions:tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol. Phylogenet. Evol. 59, 225-244. R Core Team, 2017. R:a Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna, Austria. Retrieved from. https://www.R-project.org/. Rahbek, C., Borregaard, M.K., Antonelli, A., et al., 2019a. Building mountain biodiversity:geological and evolutionary processes. Science 365, 1114-1119. Rahbek, C., Borregaard, M.K., Colwell, R.K., et al., 2019b. Humboldt's enigma:what causes global patterns of mountain biodiversity? Science 365, 1108-1113. Renner, S.S., 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43, 1479-1487. Ricklefs, R.E., 2005. Historical and ecological dimensions of global patterns in plant diversity. Biol. Skr. 55, 583-603. Shen, G.M. (Ed.), 1993-2011. Flora of Xinjiang, vols. 1-6. Xinjiang Renmin Publishing House, Ürümqi. Shi, Y.F., Li, J.J., Li, B.Y. (Eds.), 1998. Uplift and Environmental Changes of QinghaiXizang (Tibetan) in the Late Cenozoic. Guangdong Science and Technology Press, Guangzhou. Shi, Y.F., Zheng, B.X., Yao, T.D., 1997. Glaciers and environments during the largest glacial maximum (LGM) on the Tibetan plateau. J. Glaciol. Geocryol. 19, 97-113. Silvertown, J., 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605-611. Spicer, R.A., Harris, N.B.W., Widdowson, M., et al., 2003. Constant elevation of southern Tibet over the past 15 million years. Nature 421, 622-624. Spicer, R.A., Su, T., Valdes, P.J., et al., 2020. Why ‘the uplift of the Tibetan Plateau’ is a myth? Natl. Sci. Rev. 8, nwaa091. Su, Z. (Ed.), 1998. Glaciers of the Karakorum-Kunlun Mountains. Science Press, Beijing. Sun, B., Wang, Y.F., Li, C.S., et al., 2015. Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence. Sci. Rep. 5, 10379. Sun, H.L., Zheng, D. (Eds.), 1998. Formation, Evolution and Development of the Qinghai-Xizang (Tibetan) Plateau. Guangdong Science and Technology Press, Guangzhou. Sun, Y.S., Wang, A.L., Wan, D.S., et al., 2012. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Mol. Phylogenet. Evol. 63, 150-158. Svenning, J.C., Skov, F., 2005. The relative roles of environment and history as controls of tree species composition and richness in Europe. J. Biogeogr. 32, 1019-1033. Svenning, J.C., Skov, F., 2007. Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecol. Biogeogr. 16, 234-245. Tang, Z.Y., Wang, Z.H., Zheng, C.Y., et al., 2006. Biodiversity in China's mountains. Front. Ecol. Environ. 4, 347-352. Villalobos, F., Rangel, T.F., Diniz-Filho, J.A.F., 2013. Phylogenetic fields of species:cross-species patterns of phylogenetic structure and geographical coexistence. P. Roy. Soc. B-Biol. Sci. 280, 20122570. Wang, Z.H., Brown, J.H., Tang, Z.Y., et al., 2009a. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc. Natl. Acad. Sci. U.S.A. 106, 13388-13392. Wang, Z.H., Fang, J.Y., Tang, Z.Y., et al., 2012. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography 34, 1-10. Wang, X.P., Wang, Z.H., Fang, J.Y., 2004. Mountain ranges and peaks in China. Biodivers. Sci. 12, 206-212. Wang, Y.J., Susanna, A., Von Raab-Straube, E., et al., 2009b. Island-like radiation of Saussurea (asteraceae:cardueae) triggered by uplifts of the Qinghai-Tibetan plateau. Bot. J. Linn. Soc. 97, 893-903. Webb, C.O., Ackerly, D.D., McPeek, M.A., et al., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475-505. Wen, J., Zhang, J.Q., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibet Plateau. Front. Genet. 5, 1-16. Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639-644. Wiens, J.J., Graham, C.H., 2005. Niche conservatism:integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539. Wu, Y.H. (Ed.), 2012-2015. Flora Kunlunica, vols. 1-4. Chongqing Publishing Group:Chongqing Publishing House, Chongqing. Wu, Y.H. (Ed.), 2008. The Vascular Plants and Their Eco-Geographical Distribution of the Qinghai-Tibet Plateau. Science Press, Beijing. Wu, Z.Y. (Ed.), 1983-1987. Flora of Tibet Autonomous Region, vols. 1-4. Science Press, Beijing. Xing, Y.W., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451. Yan, Y.J., Tang, Z.Y., 2019. Protecting endemic seed plants on the Tibetan Plateau under future climate change:migration matters. J. Plant Ecol. 12, 962-971. Yan, Y.J., Yang, X., Tang, Z.Y., 2013. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecol. Evol. 3, 4584-4595. Yang, J., Zhang, G.C., Ci, X.Q., et al., 2014. Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Funct. Ecol. 28, 520-529. Yang, W.J., Ma, K.P., Kreft, H., 2013. Geographical sampling bias in a large distributional database and its effects on species richness-environment models. J. Biogeogr. 40, 1415-1426. Ye, J.F., Liu, Y., Chen, Z.D., 2020. Dramatic impact of metric choice on biogeographical regionalization. Plant Divers. 42, 67-73. Ye, J.F., Lu, L.M., Liu, B., et al., 2019. Phylogenetic delineation of regional biota:a case study of the Chinese flora. Mol. Phylogenet. Evol. 135, 222-229. Yi, C.L., Cui, Z.J., Xiong, H.G., 2005. Numerical periods of quaternary glaciations in China. Quat. Sci. 25, 609-619. Yu, H.B., Favre, A., Sui, X.H., et al., 2018a. Mapping the genetic patterns of plants in the region of the Qinghai-Tibet Plateau:implications for conservation strategies. Divers. Distrib. 25, 310-324. Yu, H.B., Zhang, Y.L., 2013. Advances in phylogeography of alpine plants in the Tibetan Plateau and adjacent regions. Acta Bot. Boreali Occident. Sin. 33, 1268-1278. Yu, H.B., Zhang, Y.L., Liu, L., et al., 2018b. Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau. Biodivers. Sci. 26, 130-137. Zachos, F.E., Habel, J.C. (Eds.), 2011. Biodiversity Hotspots:Distribution and Protection of Conservation Priority Areas. Springer, Berlin Heidelberg. Zanne, A.E., Tank, D.C., William, K., et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. Zhang, D.C., Boufford, D.E., Ree, R.H., et al., 2009. The 29°N latitudinal line:an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nord. J. Bot. 27, 405-412. Zhang, J.Q., Meng, S.Y., Allen, G.A., et al., 2014. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae). Mol. Phylogenet. Evol. 77, 147-158. Zhang, J.W., Nie, Z.L., Wen, J., et al., 2011. Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60, 15-26. Zhang, Y.L., Li, B.Y., Zheng, D., 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 21, 1-8. Zheng, D. (Ed.), 1999. Physical Geography of the Karakorum-Kunlun Mountains. Science Press, Beijing. Zobel, M.,1997. The relative role of species pools in determining plant species richness:an alternative explanation of species coexistence? Trends Ecol. Evol. 12, 266-269. |
[1] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests[J]. Plant Diversity, 2023, 45(05): 552-568. |
[2] | Karla J.P. Silva-Souza, Maíra G. Pivato, Vinícius C. Silva, Ricardo F. Haidar, Alexandre F. Souza. New patterns of the tree beta diversity and its determinants in the largest savanna and wetland biomes of South America[J]. Plant Diversity, 2023, 45(04): 369-384. |
[3] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots[J]. Plant Diversity, 2023, 45(03): 265-271. |
[4] | Thant Sin Aung, Alice C. Hughes, Phyo Kay Khine, Bo Liu, Xiao-Li Shen, Ke-Ping Ma. Patterns of floristic inventory and plant collections in Myanmar[J]. Plant Diversity, 2023, 45(03): 302-308. |
[5] | Jian Zhang, Hong Qian. U.Taxonstand: An R package for standardizing scientific names of plants and animals[J]. Plant Diversity, 2023, 45(01): 1-5. |
[6] | Li-Guo Zhang, Xiao-Qian Li, Wei-Tao Jin, Yu-Juan Liu, Yao Zhao, Jun Rong, Xiao-Guo Xiang. Asymmetric migration dynamics of the tropical Asian and Australasian floras[J]. Plant Diversity, 2023, 45(01): 20-26. |
[7] | Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare[J]. Plant Diversity, 2022, 44(05): 429-435. |
[8] | Wen-Jing Fang, Qiong Cai, Qing Zhao, Cheng-Jun Ji, Jiang-Ling Zhu, Zhi-Yao Tang, Jing-Yun Fang. Species richness patterns and the determinants of larch forests in China[J]. Plant Diversity, 2022, 44(05): 436-444. |
[9] | Atefeh Ghorbanalizadeh, Hossein Akhani. Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species[J]. Plant Diversity, 2022, 44(01): 39-69. |
[10] | Qichi Yang, Hehe Zhang, Lihui Wang, Feng Ling, Zhengxiang Wang, Tingting Li, Jinliang Huang. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests[J]. Plant Diversity, 2021, 43(04): 264-274. |
[11] | Xinhui Li, Tao Yang, Dandan Wang. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau[J]. Plant Diversity, 2021, 43(04): 275-280. |
[12] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation[J]. Plant Diversity, 2021, 43(03): 181-191. |
[13] | Santosh Kumar Rana, Dong Luo, Hum Kala Rana, Shaotian Chen, Hang Sun. Molecular phylogeny, biogeography and character evolution of the montane genus Incarvillea Juss. (Bignoniaceae)[J]. Plant Diversity, 2021, 43(01): 1-14. |
[14] | Urtnasan Mandakh, Munkhjargal Battseren, Danzanchadav Ganbat, Turuutuvshin Ayanga, Zolzaya Adiya, Almaz Borjigidai, Chunlin Long. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia[J]. Plant Diversity, 2020, 42(06): 434-442. |
[15] | Jie Qian, Huifu Zhuang, Weikang Yang, Yifeng Chen, Shilong Chen, Yanhua Qu, Yuanming Zhang, Yongping Yang, Yuhua Wang. Selecting flagship species to solve a biodiversity conservation conundrum[J]. Plant Diversity, 2020, 42(06): 488-491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||