[1] Briggs, J.C., 1987. Biogeography and plate tectonics. Elsevier Science Publishers, Amsterdam. [2] Brummitt, R.K., 2001.World Geographical Scheme for Recording Plant Distributions, 2 edn. Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh. [3] Cai, L., Kreft, H., Taylor, A., et al., 2022. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol, https://doi.org/10.1111/nph.18533. [4] Charkevicz, S., 1985-1996. Plantae Vasculares Orientis Extremi Sovietici, vols. 1-8, Nauka, Leningrad, Russia. [5] Chase, J., 2012. Historical and contemporary factors govern global biodiversity patterns. PLoS Biology, 10, e1001294. [6] Costion, C.M., Edwards, W., Ford, A.J., et al., 2015. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 21, 279-289. [7] Coyle, J.R., Halliday, F.W., Lopez, B.E., et al., 2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814-826. [8] Currie, D.J., 1991. Energy and large-scale patterns of animal species and plant species richness. Am. Nat. 137, 27-49. [9] Currie, D.J., Mittelbach, G.G., Cornell, H.V., et al., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121-1134. [10] Davies, T.J., Buckley, L.B., 2011. Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philos. Trans. R. Soc. B-Biol. Sci.366, 2414-2425. [11] Davies, T.J., Fritz, S.A., Grenyer, R., et al., 2008. Phylogenetic trees and the future of mammalian biodiversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11556-11563. [12] Donoghue, M.J., 2008. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105, 11549-11555. [13] Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10. [14] Feng, G., Svenning, J.-C., Mi, X., et al., 2014. Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. For. Ecol. Manage., 313, 188-198. [15] Forest, F., Grenyer, R., Rouget, M., et al., 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757-760. [16] Fridley, J.D., Qian, H., White, P.S., et al., 2006. Plant species invasions along the latitudinal gradient in the United States:Comment. Ecology 87, 3209-3213. [17] Fritz, S.A., Rahbek, C., 2012. Global patterns of amphibian phylogenetic diversity. J. Biogeogr. 39, 1373-1382. [18] Fu, Q., Huang, X., Li, L., et al., 2022. Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots. Divers. Distrib. 28, 2871-2885. [19] Guo, Q., Cade, B.S., Dawson, W., et al., 2021. Latitudinal patterns of alien plant invasions. J. Biogeogr. 48, 253-262. [20] Jin, Y., Qian, H., 2019. V.PhyloMaker:an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [21] Jin, Y., Qian, H., 2022. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [22] Jin, Y., Qian, H., 2023. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.007. [23] Kareiva, P., Marvier, M., 2003. Conserving Biodiversity Coldspots:Recent calls to direct conservation funding to the world's biodiversity hotspots may be bad investment advice. Am. Sci. 91, 344-351. [24] Kellermann, V., Loeschcke, V., Hoffmann, A.A., et al., 2012. Phylogenetic constraints in key functional traits behind species' climate niches:Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377-3389. [25] Krasnoborov, I., Peschkova, G.A., Malyschev, L., et al., 1988-1997. Flora of Siberiae, vols. 1-14, Nauka, Novosibirsk, Russia. [26] Kreft, H., Jetz, W., 2007. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. U.S.A. 104, 5925-5930. [27] Latham, R.E., Ricklefs, R.E., 1993. Global patterns of tree species richness in moist forests:energy-diversity theory does not account for variation in species richness. Oikos 67, 325-333. [28] Lehtonen, S., Jones, M.M., Zuquim, et al., 2015. Phylogenetic relatedness within Neotropical fern communities increases with soil fertility. Glob. Ecol. Biogeogr. 24, 695-705. [29] Letcher, S.G., 2010. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. R. Soc. B-Biol. Sci. 277, 97-104. [30] Mazel, F., Davies, T.J., Gallien, L., et al., 2016. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913-920. [31] Miller, J.T., Jolley-Rogers, G., Mishler, B.D., et al., 2018. Phylogenetic diversity is a better measure of biodiversity than taxon counting. J. Syst. Evol. 56, 663-667. [32] Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [33] Omer, A., Fristoe, T., Yang, Q., et al., 2022. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants 8, 906-914. [34] Pimm, S.L., Joppa, L.N., 2015. How many plant species are there, where are they, and at what rate are they going extinct? Ann. Mo. Bot. Gard. 100, 170-176. [35] Pio, D.V., Broennimann, O., Barraclough, T.G., et al., 2011. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 25, 1229-1239. [36] Qian, H., 2023. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.005. [37] Qian, H., Deng, T., 2021. Geographic patterns and climate correlates of the deviation between phylogenetic and taxonomic diversity for angiosperms in China. Biol. Conserv. 262, 109291. [38] Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. [39] Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. [40] Qian, H., Deng, T., Jin, Y., et al., 2019. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [41] Qian, H., Jin, Y., Ricklefs, R.E., 2017. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proc. Natl. Acad. Sci. U.S.A., 114, 11452-11457. [42] Qian, H., Ricklefs, R.E., Thuiller, W., 2021. Evolutionary assembly of flowering plants into sky islands. Nature Ecol. Evol. 5, 640-646. [43] Qian, H., Zhang, J., Jiang, M., 2022a. Global patterns of fern species diversity:An evaluation of fern data in GBIF. Plant Divers. 44, 135-140. [44] Qian, H., Zhang, J., Zhao, J., 2022b. How many known vascular plant species are there in the world? An integration of multiple global plant databases. Biodivers. Sci. 30, 22254. [45] Rahbek, C., Graves, G.R., 2001. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. U.S.A. 98, 4534-4539. [46] Rahbek, C., Gotelli, N.J., Colwell, R.K., et al., 2007. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B-Biol. Sci. 274, 165-174. [47] Raven, P.H., Axelrod, D.I., 1974. Angiosperm biogeography and past continental movement. Ann. Mo. Bot. Gard. 61, 539-673. [48] Ricklefs, R.E., 1987. Community diversity:relative roles of local and regional processes. Science 235, 167-171. [49] Rosenzweig, M.L., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge. [50] Saladin, B., Thuiller, W., Graham, C.H., et al., 2019. Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature Commun. 10, 249. [51] Sandel, B., Weigelt, P., Kreft, H., et al., 2020. Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Glob. Ecol. Biogeogr. 29, 4-15. [52] Scherson, R.A., Albornoz, A.A., Moreira-Munoz, A.S., et al., 2014. Endemicity and evolutionary value:a study of Chilean endemic vascular plant genera. Ecol. Evol. 4, 806-816. [53] Schroter, M., Kraemer, R., Ceausu, S., et al., 2017. Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services. Ambio 46, 756-768. [54] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [55] Suissa, J.S., Sundue, M.A., Testo, W.L., 2021. Mountains, climate and niche heterogeneity explain global patterns of fern diversity. J. Biogeogr. 48, 1296-1308. [56] Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [57] Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures:a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. [58] Voskamp, A., Baker, D.J., Stephens, P.A., et al., 2017. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr. 44, 709-721. [59] Wambulwa, M.C., Milne, R., Wu, Z.-Y., et al., 2021. Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot:Current knowledge and future perspectives. Ecol. Evol. 11, 10794-10812. [60] Wang, J., Vanderpoorten, A., Hagborg, A., et al., 2017. Evidence for a latitudinal diversity gradient in liverworts and hornworts. J. Biogeogr. 44, 487-488. [61] Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities:an example for rain forest trees. Am. Nat. 156, 145-155. [62] Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639-644. [63] Wilkinson, L., Hill, M., Welna, J.P., et al., 1992. SYSTAT for Windows:statistics. SYSTAT Inc., Evanston. [64] Yue, J., Li, R., 2021. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China. Plant Divers. 43, 111-116. [65] Zanne, A.E., Tank, D.C., Cornwell, et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. [66] Zhang, J., Qian, H., 2023. U.Taxonstand:An R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5. https://doi.org/10.1016/j.pld.2022.09.001. [67] Zhang, J., Qian, H., Girardello, M., et al., 2018. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proc. R. Soc. B-Biol. Sci. 285, 20180949. [68] Zhang, Y.-Z., Qian, L.-S., Spalink, D., et al., 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191. [69] Zhou, Y.-D., Qian, H., Jin, Y., et al., 2023. Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angiosperms in China. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.006. [70] Zupan, L., Cabeza, M., Maiorano, L., et al., 2014. Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Divers. Distribut. 20, 674-685. |