[an error occurred while processing this directive]

Plant Diversity ›› 2011, Vol. 33 ›› Issue (3): 357-363.DOI: 10.3724/SP.J.1143.2011.10192

• 研究论文 • 上一篇    

基于样方数据的云南松林分生长模型研究——以云南省保山市杨柳白族彝族乡为例

 郎荣1、2, 许建初1, Timm Tennigkeit1, 杨雪飞1, 毕迎凤1、2   

  1. 1 中国科学院昆明植物研究所山地生态系统研究中心,云南 昆明650204;
    2 中国科学院研究生院,北京100049
  • 收稿日期:2010-11-05 出版日期:2011-06-25 发布日期:2011-01-20
  • 基金资助:

    农村生物能源生产项目(0704711111)和“十一五”国家科技支撑计划亚热带森林区营林固碳技术研究示范项目(2008BAD95B09)

A Study of Stand Growth Model for Pinus yunnanensis (Pinaceae) Based on Plots Data——A Case Study in Yangliu Township, Baoshan, Yunnan Province

 LANG  Rong-1、2, XIU  Jian-Chu-1, Timm  Tennigkeit1, YANG  Xue-Fei-1, BI  Ying-Feng-1、2   

  1. 1 Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
    2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-11-05 Online:2011-06-25 Published:2011-01-20

摘要:

以云南省保山市杨柳白族彝族乡实地调查的86块云南松样地数据,使用非线性拟合的方法拟合优选常用树木生长方程,建立了包括地位指数、密度指数、平均直径和蓄积量的生长模型。经验生长方程Schumacher的拟合度与其它方程相近,但模型中参数变异系数均比其余方程低,为地位指数、平均直径和蓄积量的最优方程。

关键词: 云南松, 林分生长模型, 非线性拟合

Abstract:

Pinus yunnanensis is one of most important timber species in Yunnan Province, and widely distributed in southwest China. Studies on growth model have been reported, however, most of which focused on a specific part of growth model. To build detailed, easily used and accurate empirical stand growth model from the same dataset, a case study was conducted in Yangliu Township, Baoshan, Yunnan Province. A total of 86 sample plots data were collected using two stages sampling design. Several popular non-linear growth functions were fitted and compared, including Chapman-Richards, Mitscherlich, Schumacher, Gompertz, Logistic, Korf and Allometric function. Models of site index, density index, average diameter at breast height (DBH) and stock volume growth model were fitted respectively. The different models performed more or less similarly in terms of coefficients of determination and root mean square error (RMSE). However, empirical growth function “Schumacher” had lower coefficient of variation for all parameters than other models. Schumacher function was the most suitable one for site index, average DBH and stock volume growth model in all alternative functions.

Key words: Pinus yunnanensis, Stand growth model, Nonlinear curve fitting

中图分类号: