Austin-Brown, S.L., Chapman, K.D., 2002. Inhibition of phospholipase D alpha by N-acylethanolamines. Plant Physiol. 129 (4), 1892-1898. Badami, R.C., Patil, K.B., 1980. Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 19 (3-4), 119-153. Bewley, J.D., 1997. Seed germination and dormancy. Plant Cell 9 (7), 1055-1066. Blancaflor, E.B., Hou, G., et al., 2003. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta 217 (2), 206-217. Blancaflor, E.B., Kilaru, A., et al., 2014. N-Acylethanolamines:lipid metabolites with functions in plant growth and development. Plant J. 79 (4), 568-583. Bradford, K.J., 1997. The hydrotime concept in seed germination and dormancy. Basic Appl. Asp. Seed Biol. 30, 349-360. Chapman, K.D., 2004. Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Prog. Lipid Res. 43 (4), 302-327. Chen, H., Yu, X., et al., 2017. Phospholipase Dα1-mediated phosphatidic acid change is a key determinant of desiccation-induced viability loss in seeds. Plant Cell Environ. (n/a-n/a). Cotter, M.Q., Teaster, N.D., et al., 2011. N-acylethanolamine (NAE) inhibits growth in Arabidopsis thaliana seedlings via ABI3-dependent and -independent pathways. Plant Signal. Behav. 6 (5), 671-679. Dhonukshe, P., Laxalt, A.M., et al., 2003. Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15 (11), 2666-2679. Fatima, T., Snyder, C.L., et al., 2012. Fatty acid composition of developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the transcriptome of the mature Seed. PLoS One 7 (4). Gardiner, J., Collings, D.A., et al., 2003. The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organisation in Arabidopsis. Plant Cell Physiol. 44 (7), 687-696. Hayes, A.C., Stupak, J., et al., 2013. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase. J. Lipid Res. 54 (2), 457-466. Hilhorst, H.W.M., Toorop, P.E., 1997. Review on dormancy, germinability, and germination in crop and weed seeds. Adv. Agron. 61 (61), 111-165. Hsiao, A.S., Haslam, R.P., et al., 2014. Gene expression in plant lipid metabolism in Arabidopsis seedlings. PloS One 9 (9). Ishibashi, Y., Koda, Y., et al., 2013. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann. Bot. 111 (1), 95-102. Jia, Y., Tao, F., et al., 2013. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 8 (6), e65687. Kelly, A.A., Quettier, A.L., et al., 2011. Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol. 157 (2), 866-875. Kepczynski, J., Kepczynska, E., 1997. Ethylene in seed dormancy and germination. Physiol. Plantarum 101 (4), 720-726. Lunn, D., Wallis, J.G., et al., 2017. Overexpression of Seipin1 Increases Oil in Hydroxy-fatty Acid Accumulating seeds. Plant Cell Physiol. Motes, C.M., Pechter, P., et al., 2005. Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma 226 (3-4), 109-123. Munnik, T., Arisz, S.A., et al., 1995. G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7 (12), 2197-2210. Murphy, D.J., 1993. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog. Lipid Res. 32 (3), 247-280. Parthibane, V., Iyappan, R., et al., 2012. Serine/threonine/tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. Plant Physiol. 159 (1), 95-104. Quettier, A.L., Eastmond, P.J., 2009. Storage oil hydrolysis during early seedling growth. Plant Physiol. Biochem. 47 (6), 485-490. Shrestha, P., Callahan, D.L., et al., 2016. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids. Front. Plant Sci. 7, 1402. Siloto, R.M., Findlay, K., et al., 2006. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18 (8), 1961-1974. Verkleij, A.J., Demaagd, R., et al., 1982. Divalent-cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes. Biochim. Biophys. Acta 684 (2), 255-262. Weitbrecht, K., Muller, K., et al., 2011. First off the mark:early seed germination. J. Exp. Bot. 62 (10), 3289-3309. Yang, Y., Yu, X., et al., 2011. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency. Plant Physiol. 156 (2), 873-883. Yu, X.M., Li, A.H., et al., 2015. How membranes organize during seed germination:three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis. Plant Cell Environ. 38 (7), 1391-1403. Yu, Z.Q., Zhu, J., et al., 2006. Functional analysis of rice P0491-01 gene regulating anther development. Fen Zi Xi Bao Sheng Wu Xue Bao 39 (5), 467-472. Zheng, G.W., Jia, Y.X., et al., 2012. o-Coumaric acid from invasive Eupatorium adenophorum is a potent phytotoxin. Chemoecology 22 (2), 131-138. |