Plant Diversity ›› 2019, Vol. 41 ›› Issue (02): 124-131.DOI: 10.1016/j.pld.2018.06.001
• Articles • 上一篇
Ted Chapman, Stephanie Miles, Clare Trivedi
收稿日期:
2018-02-08
修回日期:
2018-05-31
出版日期:
2019-04-25
发布日期:
2019-05-18
通讯作者:
Ted Chapman
作者简介:
Stephanie Miles,E-mail addresses:s.miles@kew.org;Clare Trivedi,E-mail addresses:c.trivedi@kew.org
Ted Chapman, Stephanie Miles, Clare Trivedi
Received:
2018-02-08
Revised:
2018-05-31
Online:
2019-04-25
Published:
2019-05-18
Contact:
Ted Chapman
摘要: Ex situ seed banking is a practical and cost-effective means of preserving wild plant diversity and a crucial complement to the in situ conservation and restoration of species and habitats. As pressures on the natural environment have grown, so has the call for seed banks to provide scientifically-robust, practical solutions to seed-related problems in nature conservation, from single-species recovery and reintroduction to the restoration of complex, dynamic communities at the largest scales. In this paper, we discuss how the Royal Botanic Gardens, Kew and its Millennium Seed Bank have responded to this call in the United Kingdom. We demonstrate that banked seed collections can provide a range of otherwiseunavailable, high quality, known-origin, genetically-diverse biological materials. The data, expertise and specialist facilities that accompany these collections are also valuable, helping overcome constraints to the collection, production and effective use of native seed. Challenges remain - to ensure ex situ collections protect the species and genetic diversity that will enable plants to adapt to a changing environment, and to find new ways for seed banks to mobilise their resources at a landscape scale.
Ted Chapman, Stephanie Miles, Clare Trivedi. Capturing, protecting and restoring plant diversity in the UK: RBG Kew and the Millennium Seed Bank[J]. Plant Diversity, 2019, 41(02): 124-131.
Ted Chapman, Stephanie Miles, Clare Trivedi. Capturing, protecting and restoring plant diversity in the UK: RBG Kew and the Millennium Seed Bank[J]. Plant Diversity, 2019, 41(02): 124-131.
报道条数 No. of counts | 种数 No. of species (%) | ||||
---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | ||
分布型 Areal-type | |||||
世界分布 Cosmopolitan | 177 | 139 | 38 (27.3) | 21 (15.1) | 80 (57.6) |
泛热带分布 Pantropic | 37 | 33 | 3 (9.1) | 15 (45.5) | 15 (45.5) |
东亚(热带、亚热带)及热带南美间断 East Asia (Tropical & Subtropical) & Tropical South America disjuncted | 1 | 1 | 0 (0.0) | 1 (100) | 0 (0.0) |
旧世界热带分布 Old World Tropics | 111 | 83 | 26 (31.3) | 28 (33.7) | 29 (34.9) |
热带亚洲至热带大洋洲分布 Tropical Asia to Tropical Australasia Oceania | 5 | 5 | 2 (40.0) | 2 (40.0) | 1 (20.0) |
热带亚洲至热带非洲分布 Tropical Asia to Tropical Africa | 18 | 11 | 2 (18.2) | 4 (36.4) | 5 (45.5) |
热带亚洲(印度-马来西亚)分布 Tropical Southeast Asia to Indo-Malaya & Tropical Southwest Pacific Islands | 43 | 26 | 7 (26.9) | 16 (61.5) | 3 (11.5) |
北温带分布 North Temperate | 838 | 516 | 118 (22.9) | 185 (35.8) | 213 (41.3) |
东亚和北美洲间断分布 East Asia & North America disjuncted | 18 | 12 | 2 (16.7) | 6 (50) | 4 (33.3) |
旧世界温带 Old World Temperate | 11 | 11 | 2 (18.2) | 3 (27.3) | 6 (54.5) |
温带亚洲分布 Temperate Asia | 29 | 21 | 5 (23.8) | 6 (28.6) | 10 (47.6) |
地中海区、西亚至中亚分布 Mediterranean & West to Central Asia | 1 | 1 | 0 (0.0) | 0 (0.0) | 1 (100.0) |
中亚分布 Central Asia | 21 | 17 | 3 (17.6) | 6 (35.3) | 8 (47.1) |
东亚分布 East Asia | 150 | 101 | 20 (19.8) | 36 (35.6) | 45 (44.6) |
中国特有分布 Endemic to China | 31 | 24 | 2 (8.3) | 9 (37.5) | 13 (54.2) |
小计 Subtotal | 1,491 | 1,001 | 230 (23.0) | 338 (33.7) | 433 (43.3) |
生活型 Life form | |||||
一年生草本 Annual herb | 139 | 96 | 19 (19.8) | 18 (18.8) | 59 (61.5) |
多年生草本 Perennial herb | 1,208 | 796 | 182 (22.9) | 289 (36.3) | 325 (40.8) |
木本 Woody | 144 | 109 | 29 (26.6) | 31 (28.4) | 49 (45.0) |
小计 Subtotal | 1,491 | 1,001 | 230 (23.0) | 338 (33.7) | 433 (43.3) |
海拔 Altitude | |||||
<1,000 m | 51 | 38 | 13 (34.2) | 7 (18.4) | 18 (47.4) |
1,000-2,000 m | 145 | 101 | 28 (27.7) | 25 (24.8) | 48 (47.5) |
2,000-3,000 m | 222 | 156 | 24 (15.4) | 77 (49.4) | 55 (35.3) |
3,000-4,000 m | 411 | 255 | 65 (25.5) | 102 (40) | 88 (34.5) |
4,000-5,000 m | 196 | 122 | 27 (22.1) | 35 (28.7) | 60 (49.2) |
> 5,000 m | 9 | 6 | 3 (50.0) | 1 (16.7) | 2 (33.3) |
小计 Subtotal | 1,034 | 678 | 160 (23.6) | 247 (36.4) | 271 (40.0) |
表1 青藏高原与横断山被子植物区系染色体数目及倍性比例按分布型、生活型及海拔分布情况统计
Table 1 A summary of ploidy distribution of angiosperms from the Qinghai-Tibet Plateau and Hengduan Mountains according to their areal-types, life forms, and altitudes
报道条数 No. of counts | 种数 No. of species (%) | ||||
---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | ||
分布型 Areal-type | |||||
世界分布 Cosmopolitan | 177 | 139 | 38 (27.3) | 21 (15.1) | 80 (57.6) |
泛热带分布 Pantropic | 37 | 33 | 3 (9.1) | 15 (45.5) | 15 (45.5) |
东亚(热带、亚热带)及热带南美间断 East Asia (Tropical & Subtropical) & Tropical South America disjuncted | 1 | 1 | 0 (0.0) | 1 (100) | 0 (0.0) |
旧世界热带分布 Old World Tropics | 111 | 83 | 26 (31.3) | 28 (33.7) | 29 (34.9) |
热带亚洲至热带大洋洲分布 Tropical Asia to Tropical Australasia Oceania | 5 | 5 | 2 (40.0) | 2 (40.0) | 1 (20.0) |
热带亚洲至热带非洲分布 Tropical Asia to Tropical Africa | 18 | 11 | 2 (18.2) | 4 (36.4) | 5 (45.5) |
热带亚洲(印度-马来西亚)分布 Tropical Southeast Asia to Indo-Malaya & Tropical Southwest Pacific Islands | 43 | 26 | 7 (26.9) | 16 (61.5) | 3 (11.5) |
北温带分布 North Temperate | 838 | 516 | 118 (22.9) | 185 (35.8) | 213 (41.3) |
东亚和北美洲间断分布 East Asia & North America disjuncted | 18 | 12 | 2 (16.7) | 6 (50) | 4 (33.3) |
旧世界温带 Old World Temperate | 11 | 11 | 2 (18.2) | 3 (27.3) | 6 (54.5) |
温带亚洲分布 Temperate Asia | 29 | 21 | 5 (23.8) | 6 (28.6) | 10 (47.6) |
地中海区、西亚至中亚分布 Mediterranean & West to Central Asia | 1 | 1 | 0 (0.0) | 0 (0.0) | 1 (100.0) |
中亚分布 Central Asia | 21 | 17 | 3 (17.6) | 6 (35.3) | 8 (47.1) |
东亚分布 East Asia | 150 | 101 | 20 (19.8) | 36 (35.6) | 45 (44.6) |
中国特有分布 Endemic to China | 31 | 24 | 2 (8.3) | 9 (37.5) | 13 (54.2) |
小计 Subtotal | 1,491 | 1,001 | 230 (23.0) | 338 (33.7) | 433 (43.3) |
生活型 Life form | |||||
一年生草本 Annual herb | 139 | 96 | 19 (19.8) | 18 (18.8) | 59 (61.5) |
多年生草本 Perennial herb | 1,208 | 796 | 182 (22.9) | 289 (36.3) | 325 (40.8) |
木本 Woody | 144 | 109 | 29 (26.6) | 31 (28.4) | 49 (45.0) |
小计 Subtotal | 1,491 | 1,001 | 230 (23.0) | 338 (33.7) | 433 (43.3) |
海拔 Altitude | |||||
<1,000 m | 51 | 38 | 13 (34.2) | 7 (18.4) | 18 (47.4) |
1,000-2,000 m | 145 | 101 | 28 (27.7) | 25 (24.8) | 48 (47.5) |
2,000-3,000 m | 222 | 156 | 24 (15.4) | 77 (49.4) | 55 (35.3) |
3,000-4,000 m | 411 | 255 | 65 (25.5) | 102 (40) | 88 (34.5) |
4,000-5,000 m | 196 | 122 | 27 (22.1) | 35 (28.7) | 60 (49.2) |
> 5,000 m | 9 | 6 | 3 (50.0) | 1 (16.7) | 2 (33.3) |
小计 Subtotal | 1,034 | 678 | 160 (23.6) | 247 (36.4) | 271 (40.0) |
科名 Family | 属名 Genus | 报道条数 No. of counts | 种数 No. of species (%) | |||
---|---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | |||
伞形科 Apiaceae | 柴胡属 Bupleurum | 15 | 12 | 1 (8.3) | 0 (0.0) | 11 (91.7) |
伞形科 Apiaceae | 独活属 Heracleum | 34 | 16 | 2 (12.5) | 14 (87.5) | 0 (0.0) |
伞形科 Apiaceae | 藁本属 Ligusticum | 12 | 11 | 2 (18.2) | 9 (81.8) | 0 (0.0) |
天门冬科 Asparagaceae | 黄精属 Polygonatum | 27 | 18 | 3 (16.7) | 14 (77.8) | 1 (5.6) |
菊科 Asteraceae | 香青属 Anaphalis | 37 | 18 | 15 (83.3) | 3 (16.7) | 0 (0.0) |
菊科 Asteraceae | 火绒草属 Leontopodium | 20 | 13 | 7 (53.8) | 6 (46.2) | 0 (0.0) |
菊科 Asteraceae | 橐吾属 Ligularia | 20 | 17 | 1 (5.9) | 16 (94.1) | 0 (0.0) |
菊科 Asteraceae | 风毛菊属 Saussurea | 50 | 41 | 2 (4.9) | 39 (95.1) | 0 (0.0) |
紫葳科 Bignoniaceae | 角蒿属 Incarvillea | 15 | 12 | 0 (0.0) | 12 (100.0) | 0 (0.0) |
桔梗科 Campanulaceae | 蓝钟花属 Cyananthus | 23 | 14 | 2 (14.3) | 0 (0.0) | 12 (85.7) |
豆科 Fabaceae | 黄耆属 Astragalus | 12 | 12 | 2 (16.7) | 0 (0.0) | 10 (83.3) |
龙胆科 Gentianaceae | 龙胆属 Gentiana | 55 | 43 | 7 (16.3) | 18 (41.9) | 18 (41.9) |
鸢尾科 Iridaceae | 鸢尾属 Iris | 13 | 10 | 0 (0.0) | 10 (100.0) | 0 (0.0) |
百合科 Liliaceae | 葱属 Allium | 91 | 35 | 14 (40.0) | 3 (8.6) | 18 (51.4) |
百合科 Liliaceae | 百合属 Lilium | 69 | 25 | 2 (8.0) | 23 (92.0) | 0 (0.0) |
百合科 Liliaceae | 豹子花属 Nomocharis | 23 | 11 | 1 (9.1) | 10 (90.9) | 0 (0.0) |
百合科 Liliaceae | 重楼属 Paris | 27 | 18 | 1 (5.6) | 0 (0.0) | 17 (94.4) |
列当科 Orobanchaceae | 马先蒿属 Pedicularis | 21 | 21 | 0 (0.0) | 0 (0.0) | 21 (100.0) |
禾本科 Poaceae | 鹅观草属 Roegneria | 26 | 13 | 13 (100.0) | 0 (0.0) | 0 (0.0) |
报春花科 Primulaceae | 报春花属 Primula | 25 | 18 | 0 (0.0) | 13 (72.2) | 5 (27.8) |
毛茛科 Ranunculaceae | 乌头属 Aconitum | 71 | 45 | 9 (20.0) | 0 (0.0) | 36 (80.0) |
毛茛科 Ranunculaceae | 银莲花属 Anemone | 11 | 10 | 1 (10.0) | 0 (0.0) | 9 (90.0) |
毛茛科 Ranunculaceae | 翠雀属 Delphinium | 100 | 56 | 2 (3.6) | 0 (0.0) | 54 (96.4) |
毛茛科 Ranunculaceae | 毛茛属 Ranunculus | 17 | 15 | 10 (66.7) | 0 (0.0) | 5 (33.3) |
蔷薇科 Rosaceae | 苹果属 Malus | 22 | 11 | 6 (54.5) | 5 (45.5) | 0 (0.0) |
蔷薇科 Rosaceae | 悬钩子属 Rubus | 29 | 27 | 11 (40.7) | 0 (0.0) | 16 (59.3) |
虎耳草科 Saxifragaceae | 虎耳草属 Saxifraga | 10 | 10 | 4 (40.0) | 2 (20.0) | 4 (40.0) |
表2 报道种类10种以上的属的倍性分布情况
Table 2 Frequency of ploidy distribution of genus counted with more than 10 species
科名 Family | 属名 Genus | 报道条数 No. of counts | 种数 No. of species (%) | |||
---|---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | |||
伞形科 Apiaceae | 柴胡属 Bupleurum | 15 | 12 | 1 (8.3) | 0 (0.0) | 11 (91.7) |
伞形科 Apiaceae | 独活属 Heracleum | 34 | 16 | 2 (12.5) | 14 (87.5) | 0 (0.0) |
伞形科 Apiaceae | 藁本属 Ligusticum | 12 | 11 | 2 (18.2) | 9 (81.8) | 0 (0.0) |
天门冬科 Asparagaceae | 黄精属 Polygonatum | 27 | 18 | 3 (16.7) | 14 (77.8) | 1 (5.6) |
菊科 Asteraceae | 香青属 Anaphalis | 37 | 18 | 15 (83.3) | 3 (16.7) | 0 (0.0) |
菊科 Asteraceae | 火绒草属 Leontopodium | 20 | 13 | 7 (53.8) | 6 (46.2) | 0 (0.0) |
菊科 Asteraceae | 橐吾属 Ligularia | 20 | 17 | 1 (5.9) | 16 (94.1) | 0 (0.0) |
菊科 Asteraceae | 风毛菊属 Saussurea | 50 | 41 | 2 (4.9) | 39 (95.1) | 0 (0.0) |
紫葳科 Bignoniaceae | 角蒿属 Incarvillea | 15 | 12 | 0 (0.0) | 12 (100.0) | 0 (0.0) |
桔梗科 Campanulaceae | 蓝钟花属 Cyananthus | 23 | 14 | 2 (14.3) | 0 (0.0) | 12 (85.7) |
豆科 Fabaceae | 黄耆属 Astragalus | 12 | 12 | 2 (16.7) | 0 (0.0) | 10 (83.3) |
龙胆科 Gentianaceae | 龙胆属 Gentiana | 55 | 43 | 7 (16.3) | 18 (41.9) | 18 (41.9) |
鸢尾科 Iridaceae | 鸢尾属 Iris | 13 | 10 | 0 (0.0) | 10 (100.0) | 0 (0.0) |
百合科 Liliaceae | 葱属 Allium | 91 | 35 | 14 (40.0) | 3 (8.6) | 18 (51.4) |
百合科 Liliaceae | 百合属 Lilium | 69 | 25 | 2 (8.0) | 23 (92.0) | 0 (0.0) |
百合科 Liliaceae | 豹子花属 Nomocharis | 23 | 11 | 1 (9.1) | 10 (90.9) | 0 (0.0) |
百合科 Liliaceae | 重楼属 Paris | 27 | 18 | 1 (5.6) | 0 (0.0) | 17 (94.4) |
列当科 Orobanchaceae | 马先蒿属 Pedicularis | 21 | 21 | 0 (0.0) | 0 (0.0) | 21 (100.0) |
禾本科 Poaceae | 鹅观草属 Roegneria | 26 | 13 | 13 (100.0) | 0 (0.0) | 0 (0.0) |
报春花科 Primulaceae | 报春花属 Primula | 25 | 18 | 0 (0.0) | 13 (72.2) | 5 (27.8) |
毛茛科 Ranunculaceae | 乌头属 Aconitum | 71 | 45 | 9 (20.0) | 0 (0.0) | 36 (80.0) |
毛茛科 Ranunculaceae | 银莲花属 Anemone | 11 | 10 | 1 (10.0) | 0 (0.0) | 9 (90.0) |
毛茛科 Ranunculaceae | 翠雀属 Delphinium | 100 | 56 | 2 (3.6) | 0 (0.0) | 54 (96.4) |
毛茛科 Ranunculaceae | 毛茛属 Ranunculus | 17 | 15 | 10 (66.7) | 0 (0.0) | 5 (33.3) |
蔷薇科 Rosaceae | 苹果属 Malus | 22 | 11 | 6 (54.5) | 5 (45.5) | 0 (0.0) |
蔷薇科 Rosaceae | 悬钩子属 Rubus | 29 | 27 | 11 (40.7) | 0 (0.0) | 16 (59.3) |
虎耳草科 Saxifragaceae | 虎耳草属 Saxifraga | 10 | 10 | 4 (40.0) | 2 (20.0) | 4 (40.0) |
科名 Family | 属数 No. of genus | 报道条数 No. of counts | 种数 No. of species (%) | |||
---|---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | |||
伞形科 Apiaceae | 13 | 100 | 67 | 7 (10.4) | 40 (59.7) | 20 (29.9) |
天南星科 Araceae | 6 | 19 | 15 | 7 (46.7) | 7 (46.7) | 1 (6.7) |
天门冬科 Asparagaceae | 4 | 54 | 30 | 5 (16.7) | 24 (80.0) | 1 (3.3) |
菊科 Asteraceae | 28 | 200 | 149 | 35 (23.5) | 75 (50.3) | 39 (26.2) |
紫葳科 Bignoniaceae | 1 | 15 | 12 | 0 (0.0) | 12 (100.0) | 0 (0.0) |
十字花科 Brassicaceae | 12 | 29 | 22 | 3 (13.6) | 0 (0.0) | 19 (86.4) |
桔梗科 Campanulaceae | 3 | 28 | 18 | 3 (16.7) | 2 (11.1) | 13 (72.2) |
豆科 Fabaceae | 14 | 67 | 58 | 4 (6.9) | 3 (5.2) | 51 (87.9) |
龙胆科 Gentianaceae | 7 | 70 | 58 | 11 (19.0) | 21 (36.2) | 26 (44.8) |
鸢尾科 Iridaceae | 1 | 13 | 10 | 0 (0.0) | 10 (100.0) | 0 (0.0) |
百合科 Liliaceae | 16 | 251 | 114 | 27 (23.7) | 49 (43.0) | 38 (33.3) |
兰科 Orchidaceae | 12 | 37 | 26 | 7 (26.9) | 19 (73.1) | 0 (0.0) |
列当科 Orobanchaceae | 1 | 21 | 21 | 0 (0.0) | 0 (0.0) | 21 (100.0) |
禾本科 Poaceae | 6 | 47 | 27 | 25 (92.6) | 1 (3.7) | 1 (3.7) |
蓼科 Polygonaceae | 2 | 17 | 12 | 3 (25.0) | 6 (50.0) | 3 (25.0) |
报春花科 Primulaceae | 3 | 40 | 24 | 2 (8.3) | 13 (54.2) | 9 (37.5) |
毛茛科 Ranunculaceae | 22 | 247 | 159 | 29 (18.2) | 1 (0.6) | 129 (81.1) |
蔷薇科 Rosaceae | 6 | 61 | 47 | 19 (40.4) | 8 (17.0) | 20 (42.6) |
虎耳草科 Saxifragaceae | 5 | 25 | 23 | 10 (43.5) | 3 (13.0) | 10 (43.5) |
茄科 Solanaceae | 7 | 14 | 11 | 9 (81.8) | 1 (9.1) | 1 (9.1) |
表3 报道种类10种以上的科的倍性分布情况统计表
Table 3 Frequency of ploidy distribution of family counted with more than 10 species
科名 Family | 属数 No. of genus | 报道条数 No. of counts | 种数 No. of species (%) | |||
---|---|---|---|---|---|---|
总数 Total | 新多倍体 Neopolyploids | 古多倍体 Paleopolyploids | 二倍体 Diploids | |||
伞形科 Apiaceae | 13 | 100 | 67 | 7 (10.4) | 40 (59.7) | 20 (29.9) |
天南星科 Araceae | 6 | 19 | 15 | 7 (46.7) | 7 (46.7) | 1 (6.7) |
天门冬科 Asparagaceae | 4 | 54 | 30 | 5 (16.7) | 24 (80.0) | 1 (3.3) |
菊科 Asteraceae | 28 | 200 | 149 | 35 (23.5) | 75 (50.3) | 39 (26.2) |
紫葳科 Bignoniaceae | 1 | 15 | 12 | 0 (0.0) | 12 (100.0) | 0 (0.0) |
十字花科 Brassicaceae | 12 | 29 | 22 | 3 (13.6) | 0 (0.0) | 19 (86.4) |
桔梗科 Campanulaceae | 3 | 28 | 18 | 3 (16.7) | 2 (11.1) | 13 (72.2) |
豆科 Fabaceae | 14 | 67 | 58 | 4 (6.9) | 3 (5.2) | 51 (87.9) |
龙胆科 Gentianaceae | 7 | 70 | 58 | 11 (19.0) | 21 (36.2) | 26 (44.8) |
鸢尾科 Iridaceae | 1 | 13 | 10 | 0 (0.0) | 10 (100.0) | 0 (0.0) |
百合科 Liliaceae | 16 | 251 | 114 | 27 (23.7) | 49 (43.0) | 38 (33.3) |
兰科 Orchidaceae | 12 | 37 | 26 | 7 (26.9) | 19 (73.1) | 0 (0.0) |
列当科 Orobanchaceae | 1 | 21 | 21 | 0 (0.0) | 0 (0.0) | 21 (100.0) |
禾本科 Poaceae | 6 | 47 | 27 | 25 (92.6) | 1 (3.7) | 1 (3.7) |
蓼科 Polygonaceae | 2 | 17 | 12 | 3 (25.0) | 6 (50.0) | 3 (25.0) |
报春花科 Primulaceae | 3 | 40 | 24 | 2 (8.3) | 13 (54.2) | 9 (37.5) |
毛茛科 Ranunculaceae | 22 | 247 | 159 | 29 (18.2) | 1 (0.6) | 129 (81.1) |
蔷薇科 Rosaceae | 6 | 61 | 47 | 19 (40.4) | 8 (17.0) | 20 (42.6) |
虎耳草科 Saxifragaceae | 5 | 25 | 23 | 10 (43.5) | 3 (13.0) | 10 (43.5) |
茄科 Solanaceae | 7 | 14 | 11 | 9 (81.8) | 1 (9.1) | 1 (9.1) |
1 | Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hulten. Molecular Ecology, 12, 299-313. |
2 | Boufford DE, Dyck PPV (2000) South-Central China. In: Hotspots: Earth’s Biologically Richest and most Endangered Terrestrial Ecoregions (eds Mittermeier RA, Myers N, Mittermeier CG), pp. 338-351. Graphic Arts Center Publishing Company, Portland. |
3 | Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A, Elven R (2004) Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521-536. |
4 | Deng XY, Wang Q, He XJ (2009) Karyotypes of 16 populations of eight species in the genus Polygonatum (Asparagaceae) from China. Botanical Journal of the Linnean Society, 159, 245-254. |
5 | Goldblatt P (1980) Polyploidy in angiospermum: monocotyledons. In: Polyploidy: Biological Relevance (ed. Lewis WH), p. 219. Springer, New York. |
6 | Grant JK, De DC, Biochimie SBD (1963) Methods of Separation of Subcellular Structural Components. Cambridge University Press, Cambridge. |
7 | Hong DY (1990) Plant Cytotaxonomy. Science Press, Beijing.(in Chinese) [洪德元 (1990) 植物细胞分类学. 科学出版社, 北京.] |
8 | Justin R, Douglas WS (2002) Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics, 33, 589-639. |
9 | Khatoon S, Ali SI (1993) Chromosome Atlas of the Angiosperms of Pakistan. BCC & T Press, Karachi. |
10 | Levin DA (1983) Polyploidy and novelty in flowering plants. The American Naturalist, 122, 1-25. |
11 | Lewis WH (1980) Polyploidy: Biological Relevance. Springer, New York. |
12 | Li B, Chang ZY, Wu ZH, Xu LR (2004) A karyotype study of six Astragalus species from China. Acta Botanica Boreali-Occidentalia Sinica, 24, 711-715.(in Chinese with English abstract) [黎斌, 常朝阳, 吴振海, 徐朗然 (2004) 国产6种黄耆属植物的核型研究. 西北植物学报, 24, 711-715.] |
13 | Li XW, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Botanica Yunnanica, 15, 217-231.(in Chinese with English abstract) [李锡文, 李捷 (1993) 横断山脉地区种子植物区系的初步研究. 云南植物研究, 15, 217-231.] |
14 | Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science, 264, 421-424. |
15 | Mo XX, Pan GT (2006) From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events. Earth Science Frontiers, 13(6), 43-51.(in Chinese with English abstract) [莫宣学, 潘桂棠 (2006) 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6), 43-51.] |
16 | Morton JK (1993) Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Botany, 121, 159-172. |
17 | Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. |
18 | Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H (2005) Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Annals of the Missouri Botanical Garden, 92, 275-306. |
19 | Ohba H (1988) The alpine flora of the Nepal Himalayas: an introductory note. In: The Himalayan Plants, Vol. 1. (eds Ohba H, Malla SB), pp. 19-46. University of Tokyo Press, Tokyo. |
20 | Otto SP (2007) The evolutionary consequences of polyploidy. Cell, 131, 452-462. |
21 | Soltis DE, Albert VA, Mack JL, Bell CD, Paterson AH, Zheng CF, Sankoff D, Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. American Journal of Botany, 96, 336-348. |
22 | Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytologist, 161, 173-191. |
23 | Stebbins GL (1950) Variation and Evolution in Plants. Columbia University Press, New York. |
24 | Stebbins GL (1938) Cytogenetic studies in Paeonia. II. The cytology of the diploid species and hybrids. Genetics, 23, 83-110. |
25 | Stebbins GL (1971) Chromosomal Evolution in Higher Plants. Edward Arnold Ltd., London. |
26 | Stebbins GL (1980) Polyploidy in plants: unsolved problems and prospects. In: Polyploidy: Biological Relevance (ed. Lewis WH), pp. 495-520. Springer, New York. |
27 | Sun H (2002) Tethys retreat and Himalayas-Hengduanshan Mountains uplift and their significance on the origin and development of the Sino-Himalayan elements and alpine flora. Acta Botanica Yunnanica, 24, 273-288.(in Chinese with English abstract) [孙航 (2002) 古地中海退却与喜马拉雅—横断山的隆起在中国喜马拉雅成分及高山植物区系的形成与发展上的意义. 云南植物研究, 24, 273-288.] |
28 | Sun H, Li ZM (2003) Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Advance in Earth Sciences, 18, 852-862.(in Chinese with English abstract) [孙航, 李志敏 (2003) 古地中海植物区系在青藏高原隆起后的演变和发展. 地球科学进展, 18, 852-862.] |
29 | Sun H, Zhou ZK (1996) The characters and origin of the flora from the big bend gorge of Yalutsangpu (Brahmabutra) River, eastern Himalayas. Acta Botanica Yunnanica, 18, 185-204.(in Chinese with English abstract) [孙航, 周浙昆 (1996) 喜马拉雅东部雅鲁藏布江大峡湾河谷地区植物区系的特点及来源. 云南植物研究, 18, 185-204.] |
30 | Tkach N, Ree RH, Kuss P, Röser M, Hoffmann MH (2014) High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae). Molecular Phylogenetics and Evolution, 76(8), 75-92. |
31 | Wang WT (1993) Vascular Plants of the Hengduan Mountains, Vol. 1. Science Press, Beijing. [王文采 (1993) 横断山区维管植物, 上册. 科学出版社, 北京.] |
32 | Wu SG, Yang YP, Fei Y (1995) On the flora of the alpine region in the Qinghai-Xizang (Tibet) Plateau. Acta Botanica Yunnanica, 17, 233-250.(in Chinese with English abstract) [武素功, 杨永平, 费勇 (1995) 青藏高原高寒地区种子植物区系的研究. 云南植物研究, 17, 233-250.] |
33 | Wu ZY (1988) Hengduan Mountains flora and her significance. Journal of Japanese Botany, 63, 297-311. |
34 | Wu ZY (1988) Origin and evolution of the flora of Tibet. In: Flora of Xizangica, Vol. 5 (ed. Wu ZY), pp. 874-902. Science Press, Beijing.(in Chinese) [吴征镒 (1988) 西藏植物区系的起源及演化. 见: 西藏植物志, 第5卷 (吴征镒编), 874-902页. 科学出版社, 北京.] |
35 | Wu ZY (1991) The areal-types of Chinese genera of seed plants. Acta Botanica Yunnanica (Suppl. IV), 1-139.(in Chinese with English abstract) [吴征镒 (1991) 中国种子植物属的分布区类型. 云南植物研究 (增刊IV), 1-139.] |
36 | Wu ZY, Wang HS (1983) Physical Geography of China: Phytogeography (I). Science Press, Beijing.(in Chinese) [吴征镒, 王荷生 (1983) 中国自然地理: 植物地理(上册). 科学出版社, 北京.] |
37 | Yuan Q, Yang QE (2006) Polyploidy in Aconitum subgenus Lycoctonum (Ranunculaceae). Botanical Journal of the Linnean Society, 150, 343-353. |
38 | Zhou J, Pu FD, Peng HJ, Pan YZ, Gong X (2008) Karyological studies of ten Ligusticum species (Apiaceae) from the Hengduan Mountains region of China. Caryologia, 61, 333-341. |
[1] | Zhihua Zhou, Ronghong Shi, Yu Zhang, Xiaoke Xing, Xiaohua Jin. Orchid conservation in China from 2000 to 2020: Achievements and perspectives[J]. Plant Diversity, 2021, 43(05): 343-349. |
[2] | Sanjay Gairola, Hatem A. Shabana, Tamer Mahmoud, Ali El-Keblawy, Andrea Santo. Evaluating germinability of eight desert halophytes under long-term seed storage: Implications for conservation[J]. Plant Diversity, 2019, 41(04): 229-236. |
[3] | Giuseppe Fenu, Gianluigi Bacchetta, S. Christodoulou Charalambo, Christini Fournaraki, Gian Pietro Giusso del Galdo, Panagiota Gotsiou, Angelos Kyratzis, Carole Piazza, Magdalena Vicens, Maria Silvia Pinna, Bertrand de Montmollin. An early evaluation of translocation actions for endangered plant species on Mediterranean islands[J]. Plant Diversity, 2019, 41(02): 94-104. |
[4] | Christopher P. Dunn. Biological and cultural diversity in the context of botanic garden conservation strategies[J]. Plant Diversity, 2017, 39(06): 396-401. |
[5] | Katherine O'Donnell, Suzanne Sharrock. The contribution of botanic gardens to ex situ conservation through seed banking[J]. Plant Diversity, 2017, 39(06): 373-378. |
[6] | Hongwen Huang, Jingping Liao, Zheng Zhang, Qingqing Zhan. Ex situ Flora of China[J]. Plant Diversity, 2017, 39(06): 357-364. |
[7] | Timothy J. Entwisle, Chris Cole, Peter Symes. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change[J]. Plant Diversity, 2017, 39(06): 338-347. |
[8] | Charles H. Cannon, Chai-Shian Kua. Botanic gardens should lead the way to create a “Garden Earth” in the Anthropocene[J]. Plant Diversity, 2017, 39(06): 331-337. |
[9] | Ellie Merrett Wade, Jayanthi Nadarajan, Xiangyun Yang, Daniel Ballesteros, Weibang Sun, Hugh W. Pritchard. Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective[J]. Plant Diversity, 2016, 38(05): 209-220. |
[10] | Roland K.EBERWEIN. The Austrian Botanic Gardens Work Group, an Example of Active Networking to Promote Small Botanic Gardens[J]. Plant Diversity, 2011, 33(01): 75-79. |
[11] | David J.MABBERLEY. The Role of a Modern Botanic Garden: the Evolution of Kew[J]. Plant Diversity, 2011, 33(01): 31-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||