Plant Diversity ›› 2019, Vol. 41 ›› Issue (04): 213-219.DOI: 10.1016/j.pld.2019.05.003
• Articles • 下一篇
Cen Guoa,b, Zhen-Hua Guoa, De-Zhu Lia
收稿日期:
2019-03-12
修回日期:
2019-05-24
出版日期:
2019-08-25
发布日期:
2019-09-17
通讯作者:
Zhen-Hua Guo,E-mail addresses:guozhenhua@mail.kib.ac.cn;De-Zhu Li,E-mail addresses:dzl@mail.kib.ac.cn
基金资助:
Cen Guoa,b, Zhen-Hua Guoa, De-Zhu Lia
Received:
2019-03-12
Revised:
2019-05-24
Online:
2019-08-25
Published:
2019-09-17
Contact:
Zhen-Hua Guo,E-mail addresses:guozhenhua@mail.kib.ac.cn;De-Zhu Li,E-mail addresses:dzl@mail.kib.ac.cn
Supported by:
摘要: Shibataea is a genus of temperate bamboos (Poaceae:Bambusoideae) endemic to China, but little is known about its phylogenetic position and interspecific relationships. To elucidate the phylogenetic relationship of the bamboo genus Shibataea, we performed genome-scale phylogenetic analysis of all seven species and one variety of the genus using double digest restriction-site associated DNA sequencing (ddRAD-seq) and whole plastid genomes generated using genome skimming. Our phylogenomic analyses based on ddRAD-seq and plastome data congruently recovered Shibataea as monophyletic. The nuclear data resolved S. hispida as the earliest diverged species, followed by S. chinensis, while the rest of Shibataea can be further divided into two clades. However, the plastid and nuclear topologies conflict significantly. By comparing the results of network analysis and topologies reconstructed from different datasets, we identify S. kumasasa as the most admixed species, which may be caused by incomplete lineage sorting (ILS) or interspecific gene flow with four sympatric species. This study highlights the power of ddRAD and plastome data in resolving complex relationships in the intractable bamboo genus.
Cen Guo, Zhen-Hua Guo, De-Zhu Li. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae)[J]. Plant Diversity, 2019, 41(04): 213-219.
Cen Guo, Zhen-Hua Guo, De-Zhu Li. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae)[J]. Plant Diversity, 2019, 41(04): 213-219.
采样点Sampling sites | 土壤中离子含量 Ion content in soil | TSC (g·kg-1) | pH | TP (g·kg-1) | OM (g·kg-1) | TN (g·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl- (g·kg-1) | K+ (g·kg-1) | Ca2+ (g·kg-1) | Na+ (g·kg-1) | Mg2+ (g·kg-1) | Al3+ (µg·g-1) | Mn2+ (µg·g-1) | |||||||
1 | A | 4.67 ± 1.15 | 0.725 ± 0.075 | 0.15 ± 0.043 | 4.01 ± 0.13 | 0.14 ± 0.012 | 73.59 ± 8.57 | 557.76 ± 88.64 | 11.23 ± 1.07 | 3.02 ± 0.04 | 0.39 ± 0.04 | 4.29 ± 0.63 | 0.75 ± 0.17 |
B | 4.38 ± 1.51 | 0.700 ± 0.053 | 0.16 ± 0.012 | 3.77 ± 0.09 | 0.16 ± 0.019 | 71.82 ± 6.34 | 504.34 ± 63.24 | 12.15 ± 1.65 | 3.50 ± 0.06 | 0.31 ± 0.04 | 4.07 ± 0.82 | 0.88 ± 0.19 | |
C | 4.21 ± 1.26 | 0.752 ± 0.082 | 0.18 ± 0.029 | 4.23 ± 0.19 | 0.13 ± 0.023 | 66.57 ± 8.91 | 556.32 ± 75.52 | 10.12 ± 2.01 | 4.01 ± 0.07 | 0.48 ± 0.06 | 5.40 ± 0.67 | 0.95 ± 0.12 | |
2 | A | 5.36 ± 1.11 | 0.843 ± 0.098 | 0.35 ± 0.015 | 4.10 ± 0.23 | 0.17 ± 0.025 | 63.24 ± 10.02 | 499.72 ± 101.22 | 11.49 ± 1.32 | 7.24 ± 0.05 | 1.15 ± 0.06 | 8.42 ± 0.89 | 1.54 ± 0.37 |
B | 5.42 ± 1.21 | 0.792 ± 0.029 | 0.29 ± 0.019 | 3.27 ± 0.15 | 0.12 ± 0.014 | 64.25 ± 9.58 | 510.07 ± 97.25 | 11.81 ± 1.43 | 6.92 ± 0.04 | 1.14 ± 0.09 | 8.31 ± 0.48 | 1.49 ± 0.31 | |
C | 4.85 ± 1.03 | 0.834 ± 0.092 | 0.27 ± 0.021 | 3.73 ± 0.11 | 0.11 ± 0.010 | 58.61 ± 9.12 | 505.36 ± 107.45 | 11.49 ± 1.52 | 7.65 ± 0.11 | 1.11 ± 0.06 | 7.72 ± 0.64 | 1.26 ± 0.28 | |
3 | A | 6.87 ± 1.06 | 0.670 ± 0.095 | 0.31 ± 0.012 | 4.34 ± 0.09 | 0.15 ± 0.022 | 49.87 ± 6.33 | 621.67 ± 94.68 | 12.36 ± 1.09 | 7.12 ± 0.08 | 1.16 ± 0.10 | 7.68 ± 0.73 | 1.56 ± 0.43 |
B | 6.98 ± 0.96 | 0.540 ± 0.084 | 0.37 ± 0.024 | 4.17 ± 0.22 | 0.25 ± 0.017 | 54.55 ± 7.45 | 687.69 ± 99.32 | 13.86 ± 1.17 | 6.72 ± 0.08 | 1.05 ± 0.09 | 7.31 ± 0.82 | 1.72 ± 0.32 | |
C | 6.52 ± 1.24 | 0.610 ± 0.076 | 0.33 ± 0.019 | 4.05 ± 0.16 | 0.16 ± 0.021 | 47.41 ± 4.13 | 630.21 ± 103.25 | 14.37 ± 1.58 | 7.02 ± 0.07 | 0.91 ± 0.08 | 7.17 ± 0.77 | 1.11 ± 0.24 | |
4 | A | 7.87 ± 1.32 | 0.727 ± 0.085 | 0.42 ± 0.016 | 4.68 ± 0.24 | 0.12 ± 0.022 | 43.54 ± 8.41 | 505.61 ± 75.65 | 17.75 ± 1.35 | 6.94 ± 0.14 | 0.86 ± 0.05 | 6.75 ± 0.69 | 0.59 ± 0.21 |
B | 7.85 ± 1.22 | 0.746 ± 0.046 | 0.49 ± 0.025 | 4.44 ± 0.29 | 0.10 ± 0.018 | 38.81 ± 7.59 | 545.32 ± 98.64 | 16.36 ± 1.87 | 6.05 ± 0.09 | 0.77 ± 0.02 | 7.50 ± 0.72 | 0.49 ± 0.19 | |
C | 6.94 ± 1.19 | 0.790 ± 0.091 | 0.45 ± 0.028 | 4.95 ± 0.13 | 0.13 ± 0.029 | 41.21 ± 5.39 | 571.88 ± 82.63 | 19.38 ± 1.96 | 6.79 ± 0.03 | 0.91 ± 0.03 | 6.21 ± 0.77 | 0.65 ± 0.28 | |
5 | A | 8.63 ± 0.98 | 0.521 ± 0.102 | 0.34 ± 0.014 | 3.41 ± 0.12 | 0.15 ± 0.031 | 44.74 ± 11.25 | 569.21 ± 97.54 | 12.70 ± 1.23 | 6.85 ± 0.07 | 1.06 ± 0.14 | 6.69 ± 0.34 | 1.27 ± 0.41 |
B | 8.31 ± 1.09 | 0.485 ± 0.079 | 0.37 ± 0.015 | 3.77 ± 0.17 | 0.15 ± 0.027 | 37.22 ± 7.73 | 528.96 ± 102.57 | 12.12 ± 1.54 | 5.64 ± 0.04 | 1.25 ± 0.13 | 5.70 ± 0.45 | 1.12 ± 0.26 | |
C | 9.23 ± 1.13 | 0.519 ± 0.099 | 0.33 ± 0.021 | 4.28 ± 0.14 | 0.12 ± 0.022 | 35.98 ± 10.36 | 584.21 ± 85.95 | 13.23 ± 2.01 | 6.64 ± 0.06 | 1.30 ± 0.21 | 6.69 ± 0.38 | 1.13 ± 0.33 | |
6 | A | 10.95 ± 0.97 | 0.347 ± 0.086 | 0.06 ± 0.011 | 5.16 ± 0.15 | 0.07 ± 0.013 | 28.93 ± 6.12 | 129.43 ± 64.57 | 14.86 ± 1.82 | 6.87 ± 0.10 | 0.30 ± 0.04 | 9.39 ± 0.66 | 1.20 ± 0.25 |
B | 10.36 ± 1.13 | 0.358 ± 0.056 | 0.08 ± 0.016 | 5.90 ± 0.26 | 0.09 ± 0.014 | 33.65 ± 3.25 | 102.57 ± 81.47 | 15.42 ± 1.52 | 6.53 ± 0.05 | 0.37 ± 0.02 | 10.80 ± 0.47 | 1.48 ± 0.31 | |
C | 12.24 ± 1.28 | 0.301 ± 0.092 | 0.05 ± 0.013 | 5.81 ± 0.32 | 0.05 ± 0.011 | 26.35 ± 4.99 | 122.33 ± 57.39 | 14.52 ± 1.69 | 6.93 ± 0.06 | 0.27 ± 0.04 | 10.20 ± 0.52 | 1.34 ± 0.23 |
表1 红海榄样品采样处土壤养分状况和盐分含量(平均值±标准偏差)
Table 1 Nutrient conditions and salt composition analysis of soils at different sampling sites of Rhizophora stylosa (mean ± SD)
采样点Sampling sites | 土壤中离子含量 Ion content in soil | TSC (g·kg-1) | pH | TP (g·kg-1) | OM (g·kg-1) | TN (g·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl- (g·kg-1) | K+ (g·kg-1) | Ca2+ (g·kg-1) | Na+ (g·kg-1) | Mg2+ (g·kg-1) | Al3+ (µg·g-1) | Mn2+ (µg·g-1) | |||||||
1 | A | 4.67 ± 1.15 | 0.725 ± 0.075 | 0.15 ± 0.043 | 4.01 ± 0.13 | 0.14 ± 0.012 | 73.59 ± 8.57 | 557.76 ± 88.64 | 11.23 ± 1.07 | 3.02 ± 0.04 | 0.39 ± 0.04 | 4.29 ± 0.63 | 0.75 ± 0.17 |
B | 4.38 ± 1.51 | 0.700 ± 0.053 | 0.16 ± 0.012 | 3.77 ± 0.09 | 0.16 ± 0.019 | 71.82 ± 6.34 | 504.34 ± 63.24 | 12.15 ± 1.65 | 3.50 ± 0.06 | 0.31 ± 0.04 | 4.07 ± 0.82 | 0.88 ± 0.19 | |
C | 4.21 ± 1.26 | 0.752 ± 0.082 | 0.18 ± 0.029 | 4.23 ± 0.19 | 0.13 ± 0.023 | 66.57 ± 8.91 | 556.32 ± 75.52 | 10.12 ± 2.01 | 4.01 ± 0.07 | 0.48 ± 0.06 | 5.40 ± 0.67 | 0.95 ± 0.12 | |
2 | A | 5.36 ± 1.11 | 0.843 ± 0.098 | 0.35 ± 0.015 | 4.10 ± 0.23 | 0.17 ± 0.025 | 63.24 ± 10.02 | 499.72 ± 101.22 | 11.49 ± 1.32 | 7.24 ± 0.05 | 1.15 ± 0.06 | 8.42 ± 0.89 | 1.54 ± 0.37 |
B | 5.42 ± 1.21 | 0.792 ± 0.029 | 0.29 ± 0.019 | 3.27 ± 0.15 | 0.12 ± 0.014 | 64.25 ± 9.58 | 510.07 ± 97.25 | 11.81 ± 1.43 | 6.92 ± 0.04 | 1.14 ± 0.09 | 8.31 ± 0.48 | 1.49 ± 0.31 | |
C | 4.85 ± 1.03 | 0.834 ± 0.092 | 0.27 ± 0.021 | 3.73 ± 0.11 | 0.11 ± 0.010 | 58.61 ± 9.12 | 505.36 ± 107.45 | 11.49 ± 1.52 | 7.65 ± 0.11 | 1.11 ± 0.06 | 7.72 ± 0.64 | 1.26 ± 0.28 | |
3 | A | 6.87 ± 1.06 | 0.670 ± 0.095 | 0.31 ± 0.012 | 4.34 ± 0.09 | 0.15 ± 0.022 | 49.87 ± 6.33 | 621.67 ± 94.68 | 12.36 ± 1.09 | 7.12 ± 0.08 | 1.16 ± 0.10 | 7.68 ± 0.73 | 1.56 ± 0.43 |
B | 6.98 ± 0.96 | 0.540 ± 0.084 | 0.37 ± 0.024 | 4.17 ± 0.22 | 0.25 ± 0.017 | 54.55 ± 7.45 | 687.69 ± 99.32 | 13.86 ± 1.17 | 6.72 ± 0.08 | 1.05 ± 0.09 | 7.31 ± 0.82 | 1.72 ± 0.32 | |
C | 6.52 ± 1.24 | 0.610 ± 0.076 | 0.33 ± 0.019 | 4.05 ± 0.16 | 0.16 ± 0.021 | 47.41 ± 4.13 | 630.21 ± 103.25 | 14.37 ± 1.58 | 7.02 ± 0.07 | 0.91 ± 0.08 | 7.17 ± 0.77 | 1.11 ± 0.24 | |
4 | A | 7.87 ± 1.32 | 0.727 ± 0.085 | 0.42 ± 0.016 | 4.68 ± 0.24 | 0.12 ± 0.022 | 43.54 ± 8.41 | 505.61 ± 75.65 | 17.75 ± 1.35 | 6.94 ± 0.14 | 0.86 ± 0.05 | 6.75 ± 0.69 | 0.59 ± 0.21 |
B | 7.85 ± 1.22 | 0.746 ± 0.046 | 0.49 ± 0.025 | 4.44 ± 0.29 | 0.10 ± 0.018 | 38.81 ± 7.59 | 545.32 ± 98.64 | 16.36 ± 1.87 | 6.05 ± 0.09 | 0.77 ± 0.02 | 7.50 ± 0.72 | 0.49 ± 0.19 | |
C | 6.94 ± 1.19 | 0.790 ± 0.091 | 0.45 ± 0.028 | 4.95 ± 0.13 | 0.13 ± 0.029 | 41.21 ± 5.39 | 571.88 ± 82.63 | 19.38 ± 1.96 | 6.79 ± 0.03 | 0.91 ± 0.03 | 6.21 ± 0.77 | 0.65 ± 0.28 | |
5 | A | 8.63 ± 0.98 | 0.521 ± 0.102 | 0.34 ± 0.014 | 3.41 ± 0.12 | 0.15 ± 0.031 | 44.74 ± 11.25 | 569.21 ± 97.54 | 12.70 ± 1.23 | 6.85 ± 0.07 | 1.06 ± 0.14 | 6.69 ± 0.34 | 1.27 ± 0.41 |
B | 8.31 ± 1.09 | 0.485 ± 0.079 | 0.37 ± 0.015 | 3.77 ± 0.17 | 0.15 ± 0.027 | 37.22 ± 7.73 | 528.96 ± 102.57 | 12.12 ± 1.54 | 5.64 ± 0.04 | 1.25 ± 0.13 | 5.70 ± 0.45 | 1.12 ± 0.26 | |
C | 9.23 ± 1.13 | 0.519 ± 0.099 | 0.33 ± 0.021 | 4.28 ± 0.14 | 0.12 ± 0.022 | 35.98 ± 10.36 | 584.21 ± 85.95 | 13.23 ± 2.01 | 6.64 ± 0.06 | 1.30 ± 0.21 | 6.69 ± 0.38 | 1.13 ± 0.33 | |
6 | A | 10.95 ± 0.97 | 0.347 ± 0.086 | 0.06 ± 0.011 | 5.16 ± 0.15 | 0.07 ± 0.013 | 28.93 ± 6.12 | 129.43 ± 64.57 | 14.86 ± 1.82 | 6.87 ± 0.10 | 0.30 ± 0.04 | 9.39 ± 0.66 | 1.20 ± 0.25 |
B | 10.36 ± 1.13 | 0.358 ± 0.056 | 0.08 ± 0.016 | 5.90 ± 0.26 | 0.09 ± 0.014 | 33.65 ± 3.25 | 102.57 ± 81.47 | 15.42 ± 1.52 | 6.53 ± 0.05 | 0.37 ± 0.02 | 10.80 ± 0.47 | 1.48 ± 0.31 | |
C | 12.24 ± 1.28 | 0.301 ± 0.092 | 0.05 ± 0.013 | 5.81 ± 0.32 | 0.05 ± 0.011 | 26.35 ± 4.99 | 122.33 ± 57.39 | 14.52 ± 1.69 | 6.93 ± 0.06 | 0.27 ± 0.04 | 10.20 ± 0.52 | 1.34 ± 0.23 |
解剖性状 Anatomical characteristics | 生态因子 Ecological factor | 回归方程 Regression equation | 校正决定系数Adjusted R2 |
---|---|---|---|
VEL | 土壤全盐含量 Total soil salt content | Y VEL = 344.761 + 12.039XTSC | 0.386** |
RD | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | Y RD = 101.890 - 0.042X Mn2+ - 5.777X Na+ | 0.726** |
RD50 | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | YRD = 128.047 - 0.050X Mn2+ - 5.634X Na+ | 0.587** |
TD | 土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤有机质含量 Soil organic matter content、土壤Cl-含量 Soil Cl- content | YTD = 71.773 + 12.836 XTP - 0.033X Mn2+ - 3.589X Na+ - 0.901XOM + 0.547 XCl- | 0.896** |
PA | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content | YPA = 5262.683 - 3.836 X Mn2+ + 916.810XTP -315.615XNa+ -75.814XOM | 0.900** |
PA50 | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content | YPA50 = 8978.891 - 6.142XMn2+ - 454.463XNa+ + 1191.560XTP - 177.127XOM | 0.815** |
CA | 土壤pH值 Soil pH value | YCA = 5.695 + 0.453XpH | 0.385** |
PD | 土壤Ca2+含量、土壤全盐量 Total soil salt content | YPD = 10.615 + 40.737XCa2+ + 1.608XTSC | 0.762** |
RH | 土壤Ca2+含量 Soil Ca2+ content | YRH = 967.204 + 754.122XCa2+ | 0.422** |
RW | 土壤Ca2+含量 Soil Ca2+ content、土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | YRW = 24.786 + 20.811XCa2+ - 8.091XTP+ 0.024X Mn2+ + 3.194X Na+ | 0.723** |
RF | 土壤全磷含量 Soil total phosphorus content、土壤Ca2+含量 Soil Ca2+ content | YRF = 9.331 - 2.759XTP + 6.038XCa2+ | 0.562** |
FL | 土壤Mn2+含量 Soil Mn2+ content、土壤Ca2+含量 Soil Ca2+ content | YFL = 1287.519 - 0.687XMn2+ + 491.239XCa2+ | 0.819** |
FWT | 土壤Mn2+含量 Soil Mn2+ content | YFWT = 6.868 - 0.002X | 0.441** |
表3 次生木质部特征与环境因子的逐步多重回归分析
Table 3 Stepwise multiple regressions among secondary xylem characteristics and environmental factors
解剖性状 Anatomical characteristics | 生态因子 Ecological factor | 回归方程 Regression equation | 校正决定系数Adjusted R2 |
---|---|---|---|
VEL | 土壤全盐含量 Total soil salt content | Y VEL = 344.761 + 12.039XTSC | 0.386** |
RD | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | Y RD = 101.890 - 0.042X Mn2+ - 5.777X Na+ | 0.726** |
RD50 | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | YRD = 128.047 - 0.050X Mn2+ - 5.634X Na+ | 0.587** |
TD | 土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤有机质含量 Soil organic matter content、土壤Cl-含量 Soil Cl- content | YTD = 71.773 + 12.836 XTP - 0.033X Mn2+ - 3.589X Na+ - 0.901XOM + 0.547 XCl- | 0.896** |
PA | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content | YPA = 5262.683 - 3.836 X Mn2+ + 916.810XTP -315.615XNa+ -75.814XOM | 0.900** |
PA50 | 土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content、土壤全磷含量 Soil total phosphorus content、土壤有机质含量 Soil organic matter content | YPA50 = 8978.891 - 6.142XMn2+ - 454.463XNa+ + 1191.560XTP - 177.127XOM | 0.815** |
CA | 土壤pH值 Soil pH value | YCA = 5.695 + 0.453XpH | 0.385** |
PD | 土壤Ca2+含量、土壤全盐量 Total soil salt content | YPD = 10.615 + 40.737XCa2+ + 1.608XTSC | 0.762** |
RH | 土壤Ca2+含量 Soil Ca2+ content | YRH = 967.204 + 754.122XCa2+ | 0.422** |
RW | 土壤Ca2+含量 Soil Ca2+ content、土壤全磷含量 Soil total phosphorus content、土壤Mn2+含量 Soil Mn2+ content、土壤Na+含量 Soil Na+ content | YRW = 24.786 + 20.811XCa2+ - 8.091XTP+ 0.024X Mn2+ + 3.194X Na+ | 0.723** |
RF | 土壤全磷含量 Soil total phosphorus content、土壤Ca2+含量 Soil Ca2+ content | YRF = 9.331 - 2.759XTP + 6.038XCa2+ | 0.562** |
FL | 土壤Mn2+含量 Soil Mn2+ content、土壤Ca2+含量 Soil Ca2+ content | YFL = 1287.519 - 0.687XMn2+ + 491.239XCa2+ | 0.819** |
FWT | 土壤Mn2+含量 Soil Mn2+ content | YFWT = 6.868 - 0.002X | 0.441** |
[1] | Alongi DM, Clough BF, Robertson AI (2005). Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina.Aquatic Botany, 82, 121-131. |
[2] | Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock.Canadian Journal of Botany, 76, 1180-1187. |
[3] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. The Iowa State University Press, Iowa. |
[4] | Carlquist S (2001). Comparative Wood Anatomy. 2nd edn. Springer, Berlin. |
[5] | Deng CY, Lin P, Guo SZ (2004a). Study on wood anatomy of Lumnitzera species.Journal of Xiamen University (Natural Science), 43, 406-411. (in Chinese with English abstract)[邓传远, 林鹏, 郭素枝 (2004a). 榄李属(Lumnitzera)红树植物的木材解剖学研究. 厦门大学学报(自然科学版), 43, 406-411. ] |
[6] | Deng CY, Lin P, Guo SZ (2004b). Wood structures of some Sonneratia species and their adaptation to intertidal habitats.Acta Phytoecologica Sinica, 28, 392-399. (in Chinese with English abstract)[邓传远, 林鹏, 郭素枝 (2004b). 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应. 植物生态学报, 28, 392-399. ] |
[7] | Fei SL, Fang JY, Fan YJ, Zhao K, Liu XJ, Cui KM (1999). Anatomical characteristics of leaves and woods of Fagus lucida and their relationship to ecological factors in Mountain Fanjingshan, Guizhou, China.Acta Botanica Sinica, 41, 1002-1009. (in Chinese with English abstract)[费松林, 方精云, 樊拥军, 赵坤, 刘雪皎, 崔克明 (1999). 贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系. 植物学报, 41, 1002-1009. ] |
[8] | Fonti P, von Arx G, García-González I, Eilmann B, Sass- Klaassen U, Gärtner H, Eckstein D (2010). Studying glob- al change through investigation of the plastic responses of xylem anatomy in tree rings.New Phytologist, 185, 42-53. |
[9] | Herbette S, Cochard H (2010). Calcium is a major determinant of xylem vulnerability to cavitation.Plant Physiology, 153, 1932-1939. |
[10] | IAWA Committee (1989). IAWA list of microscopic features for hardwood identification: With an appendix on non-anatomical information.IAWA Bulletin New Series, 10, 219-332. |
[11] | Junghans U, Polle A, Düchtig P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006). Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology.Plant, Cell & Environment, 29, 1519-1531. |
[12] | Kohonen MM, Helland Å (2009). On the function of wall sculpturing in xylem conduits.Journal of Bionic Engineering, 6, 324-329. |
[13] | Lin P (1999). Mangrove Ecosystem in China. Science Press, Beijing. |
[14] | Liu GS (1996). Soil Physical and Chemical Analysis & Description of Soil Profiles. Standards Press of China, Beijing. (in Chinese)[刘光崧 (1996). 土壤理化分析与剖面描述. 中国标准出版社, 北京. ] |
[15] | Lu RK (2000). Analytical Methods for Soil and Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing. (in Chinese)[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] |
[16] | Nardini A, Lo Gullo MA, Salleo S (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading?Plant Science, 180, 604-611. |
[17] | Plavcová L, Hacke UG (2011). Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species.New Phytologist, 192, 885-897. |
[18] | Robert EMR, Koedam N, Beeckman H, Schmitz N (2009). A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora.Functional Ecology, 23, 649-657. |
[19] | Robert EMR, Schmitz N, Okello JA, Boeren I, Beeckman H, Koedam N (2011). Mangrove growth rings: Fact or fiction?Trees, 25, 49-58. |
[20] | Salleo S, Trifilò P, Nardini A, Lo Gullo MA (2009). Starch-to- sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair?Functional Plant Biology, 36, 815-825. |
[21] | Santandrea G, Schiff S, Bennici A (1998). Effects of manganese on Nicotiana species cultivated in vitro and characterization of regenerated Mn-tolerant tobacco plants.Plant Science, 132, 71-82. |
[22] | Schmitz N, Jansen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007). Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya.Annals of Botany, 100, 271-281. |
[23] | Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N (2006). Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata.Annals of Botany, 98, 1321-1330. |
[24] | Secchi F, Zwieniecki MA (2011). Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling.Plant, Cell & Environment, 34, 514-524. |
[25] | Shi GR, Cheng XL, Liu L, Ma CC (2006). Anatomical and water physiological plasticity of Grewia biloba var. parviflora leaf and secondary xylem.Chinese Journal of Applied Ecology, 17, 1801-1806. (in Chinese with English abstract)[史刚荣, 程雪莲, 刘蕾, 马成仓 (2006). 扁担木叶片和次生木质部解剖和水分生理特征的可塑性. 应用生态学报, 17, 1801-1806. ] |
[26] | Shi GR, Liu L (2006). Secondary xylem anatomic characteristics of dominant plant species in three communities in Xiangshan Mountain, Huaibei, China.Acta Botanica Yunnanica, 28, 363-370. (in Chinese with English abstract)[史刚荣, 刘蕾 (2006). 淮北相山三种群落中优势树种次生木质部的解剖学特征. 云南植物研究, 28, 363-370. ] |
[27] | Strauss-Debenedetti S, Bazzaz FA (1991). Plasticity and acclimation to light in tropical Moraceae of different sucessional positions.Oecologia, 87, 377-387. |
[28] | Sun Q, Lin P (1997). Wood structure of Aegiceras corniculatum and its ecological adaptations to salinities.Hydrobiologia, 352, 61-65. |
[29] | Turner NC (1979). Drought resistance and adaptation to water deficits in crop plants. In: Mussell H, Staples RC eds. Stress Physiology in Crop Plants. John Wiley & Sons, New York. |
[30] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?IAWA Journal, 15, 335-360. |
[31] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer, Berlin. |
[32] | Verheyden A, de Ridder F, Schmitz N, Beeckman H, Koedam N (2005). High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate.New Phytologist, 167, 425-435. |
[33] | Yáñez-Espinosa L, Terrazas T, López-Mata L (2001). Effects of flooding on wood and bark anatomy of four species in a mangrove forest community.Trees, 15, 91-97. |
[34] | Zwieniecki MA, Holbrook NM. (2009). Confronting Maxwell’s demon: Biophysics of xylem embolism repair.Trends in Plant Science, 14, 530-534. |
[1] | Xin-Mao Zhou, Li-Bing Zhang. Phylogeny, character evolution, and classification of Selaginellaceae(lycophytes)[J]. Plant Diversity, 2023, 45(06): 630-684. |
[2] | Zhe Chen, Zhuo Zhou, Ze-Min Guo, Truong Van Do, Hang Sun, Yang Niu. Historical development of karst evergreen broadleaved forests in East Asia has shaped the evolution of a hemiparasitic genus Brandisia (Orobanchaceae)[J]. Plant Diversity, 2023, 45(05): 501-512. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae)[J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Yu-Feng Gu, Jiang-Ping Shu, Yi-Jun Lu, Hui Shen, Wen Shao, Yan Zhou, Qi-Meng Sun, Jian-Bing Chen, Bao-Dong Liu, Yue-Hong Yan. Insights into cryptic speciation of quillworts in China[J]. Plant Diversity, 2023, 45(03): 284-301. |
[5] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals[J]. Plant Diversity, 2023, 45(03): 347-352. |
[6] | Xing Liu, Hui-Min Cai, Wen-Qiao Wang, Wei Lin, Zhi-Wei Su, Zhong-Hui Ma. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae)[J]. Plant Diversity, 2023, 45(01): 6-19. |
[7] | Mei-Zhen Wang, Xiao-Kai Fan, Yong-Hua Zhang, Jing Wu, Li-Mi Mao, Sheng-Lu Zhang, Min-Qi Cai, Ming-Hong Li, Zhang-Shi-Chang Zhu, Ming-Shui Zhao, Lu-Xian Liu, Kenneth M. Cameron, Pan Li. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae)[J]. Plant Diversity, 2023, 45(01): 54-68. |
[8] | Hong-Hu Meng, Can-Yu Zhang, Shook Ling Low, Lang Li, Jian-Yong Shen, Nurainas, Yu Zhang, Pei-Han Huang, Shi-Shun Zhou, Yun-Hong Tan, Jie Li. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae)[J]. Plant Diversity, 2022, 44(06): 552-564. |
[9] | Yi Jin, Hong Qian. V.PhyloMaker2:An updated and enlarged R package that can generate very large phylogenies for vascular plants[J]. Plant Diversity, 2022, 44(04): 335-339. |
[10] | Jun-Hao Yu, Rui Zhang, Qiao-Ling Liu, Fa-Guo Wang, Xun-Lin Yu, Xi-Ling Dai, Yong-Bo Liu, Yue-Hong Yan. Ceratopteris chunii and Ceratopteris chingii (Pteridaceae), two new diploid species from China, based on morphological, cytological, and molecular data[J]. Plant Diversity, 2022, 44(03): 300-307. |
[11] | Lei Huang, Fang-Dong Geng, Jing-Jing Fan, Wei Zhai, Cheng Xue, Xiao-Hui Zhang, Yi Ren, Ju-Qing Kang. Evidence for two types of Aquilegia ecalcarata and its implications for adaptation to new environments[J]. Plant Diversity, 2022, 44(02): 153-162. |
[12] | Zheng-Yu Zuo, Ting Zhao, Xin-Yu Du, Yun Xiong, Jin-Mei Lu, De-Zhu Li. A revision of Dryopteris sect. Diclisodon (Dryopteridaceae) based on morphological and molecular evidence with description of a new species[J]. Plant Diversity, 2022, 44(02): 181-190. |
[13] | Zhen-Yu Lv, Ziyoviddin Yusupov, Dai-Gui Zhang, Ya-Zhou Zhang, Xiao-Shuang Zhang, Nan Lin, Komiljon Tojibaev, Hang Sun, Tao Deng. Oreocharis xieyongii, an unusual new species of Gesneriaceae from western Hunan, China[J]. Plant Diversity, 2022, 44(02): 222-230. |
[14] | Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships[J]. Plant Diversity, 2022, 44(01): 70-82. |
[15] | Zhi-Jian Yin, Ze-Huan Wang, Norbert Kilian, Ying Liu, Hua Peng, Ming-Xu Zhao. Mojiangia oreophila (Crepidinae, Cichorieae, Asteraceae), a new species and genus from Mojiang County, SW Yunnan, China, and putative successor of the maternal Faberia ancestor[J]. Plant Diversity, 2022, 44(01): 83-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||