Bączkiewicz, A., Szczecińska, M., Sawicki, J., et al., 2017. DNA barcoding, ecology and geography of the cryptic species of Aneura pinguis and their relationships with Aneura maxima and Aneura mirabilis (Metzgeriales, Marchantiophyta). PloS One 12, e0188837. Bickford, D., Lohman, D.J., Sodhi, N.S., et al., 2007. Cryptic species as a window on diversity and conversation. Trends Ecol. Evol. 22, 148-155. Brasier, M.J., Wiklund, H., Neal, L., et al., 2016. DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. R. Soc. Open Sci. 3, 160432. Carstens, B.C., Salter, J.D., 2013. The carnivorous plant described as Sarracenia alata contains two cryptic species. Biol. J. Linn. Soc. 109, 737-746. CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc. Natl. Acad.Sci. Unit. States Am. 106, 12794-12797. Chen, S., Yao, H., Han, J., et al., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One 5, e8613. De Candolle, A.P., 1825. Dumasia DC. Ann. Sci. Nat., Zool. 4, 96-97. De Candolle, A.P., 1826. Dumasia DC. Mémoires sur la Famille des Légumineuses. A. Belin, Paris, pp. 255-257. Doyle, J.J., 1992. Gene trees and species trees: molecular systematics as onecharacter taxonomy. Syst. Bot. 17, 144-163. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. Forbes, F.B., Hemsley, W.B., 1886-1888. An enumeration of all the plants known from China Proper, Formosa, Hainan, Corea the Luchu Archipelago and the Island of Hongkong, together with their distribution and synonym. J. Linn. Soc.Bot. 23, 1-489. Gao, L.-M., Li, Y., Phan, L.-K., et al., 2017. DNA barcoding of East Asian Amentotaxus(Taxaceae): potential new species and implications for conservation.J. Systemat. Evol. 55, 16-24. Gregory, T.R., 2005. DNA barcoding does not compete with taxonomy. Nature 434, 1067. Girma, G., Spillane, C., Gedil, M., 2016. DNA barcoding of the main cultivated yams and selected wild species in the genus Dioscorea. J. Systemat. Evol. 54, 228-237. Hebert, P.D.N., Cywinska, A., Ball, S.L., et al., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270, 313-321. Hebert, P.D.N., Penton, E.H., Burns, J.M., et al., 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812-14817. Hollingsworth, P.M., Forrest, L.L., Spouge, J.L., et al., 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106, 12794-12797. Hollingsworth, P.M., Graham, S.W., Little, D.P., 2011. Choosing and using a plant DNA barcode. PloS One 6, e19254. Johnson, S.B., Warén, A., Vrijenhoek, R.C., 2008. DNA barcoding of Lepetodrilus limpets reveals cryptic species. J. Shellfish Res. 27, 43-51. Kanturski, M., Lee, Y., Choi, J., et al., 2018. DNA barcoding and a precise morphological comparison revealed a cryptic species in the Nippolachnus piri complex(Hemiptera: aphididae: Lachninae). Sci. Rep. 8, 8998. Kress, W.J., Wurdack, K.J., Zimmer, E.A., et al., 2005. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U.S.A. 102, 8369-8374. Kress, W.J., Erickson, D.L., 2007. A two locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One 2, e508. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. Lahaye, R., van der Bank, M., Bogarin, D., et al., 2008. DNA barcoding the floras of biodiversity hotspots. Proc. Natl. Acad. Sci. U.S.A. 105, 2923-2928. Lackey, J.A., 1981. Tribe 10. Phaseoleae DC. In: Polhill, R.M., Raven, P.H. (Eds.), Advances in Legume Systematics, Part 1. Kew Publisher, Royal Botanical Gardens, Kew, pp. 301-327. Lara, A., de León, J.L.P., Rodríguez, R., et al., 2010. DNA barcoding of Cuban fresh-water fishes: evidence for cryptic species and taxonomic conflicts. Mol. Ecol.Resour. 10, 421-430. Leese, F., Bouchez, A., Abarenkov, K., et al., 2018. Why we need sustainable networks bridging countries, disciplines, cultures and generations for aquatic Biomonitoring 2.0: a perspective derived from the DNAqua-Net COST action. Adv.Ecol. Res. 58, 63-99. Li, D.-Z., Liu, J.-Q., Chen, Z.-D., et al., 2011a. Plant DNA barcoding in China.J. Systemat. Evol. 49, 165-168. Li, D.-Z., Gao, L.-M., Li, H.-T., et al., 2011b. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. Unit. States Am. 108, 19641-19646. Li, Y.-L., Tong, Y., Xing, F.-W., 2016. DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Front. Plant Sci. 7, 1791. Liu, J., Möller, M., Gao, L.-M., et al., 2011. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol.Ecol. Res. 11, 89-100. Liu, J., Milne, R.I., Moller, M., et al., 2018. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification.Mol. Ecol. Res. 18, 1115-1131. Liu, J., Möller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. https://doi.org/10.1111/nph.12336. Liu, Z.-F., Ci, X.-Q., Li, L., et al., 2017. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PloS One 12, e0175788. Meeboonya, R., Ngernsaengsaruay, C., Balslev, H., et al., 2019. The genus Dumasia(Fabaceae) in Thailand. Thai Forest Bull. Bot. 47, 113-120. Meier, R., Shiyang, K., Vaidya, G., et al., 2006. DNA barcoding and taxonomy of Diptera: a tale of high intraspecific variability and low identification success.Syst. Biol. 55, 715-728. Merrill, E.D., 1910. An enumeration of Philippine Leguminosae, with keys to the genera and species (concluded). Philipp. J. Sci. 5, 95-136. Meyer, C.P., Paulay, G., 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 3, e422. Möller, M., Gao, L.M., Mill, R.R., et al., 2013. A multidisciplinary approach reveals hidden taxonomic diversity in the morphologically challenging Taxus wallichiana complex. Taxon 62, 1161-1177. https://doi.org/10.12705/626.9. Moore, M.J., Soltis, P.S., Bell, C.D., et al., 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci.U.S.A. 107, 4623-4628. Newmaster, S.G., Ragupathy, S., 2009. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Mol. Ecol. Res. 9, 172-180. Pfenninger, M., Nowak, C., Kley, C., et al., 2007. Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Mol. Ecol. 16, 1957-1968. Posada, D., Crandell, K.A., 1998. Modeltest: testing the model of DNA substitution.Bioinformation 14, 817-818. Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808. Pan, B., Zhu, X.-Y., 2010. Taxonomic revision of Dumasia (Fabaceae, Papilionoideae).Ann. Bot. Fenn. 47, 241-256. Pradeep, S.V., Nayar, M.P., 1991. Novelties in the genus Dumasia DC. (Leguminosae-Papilionoideae). J. Jpn. Bot. 66, 275-279. Ronquist, F., Teslenko, M., Van der Mark, P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Syst. Biol. 61, 539-542. Sa, R., Gilbert, M.G., 2010. Dumasia DC. In: Wu, Z.-Y., Raven, P.H., Hong, D.-Y. (Eds.), Flora of China, vol. 10. Science Press, Beijing and Missouri Botanical Garden Press, St Louis, pp. 242-244. Soltis, D.E., Soltis, P.S., Chase, M.W., et al., 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133, 381-461. Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. Struck, T.H., Feder, J.L., Bendiksby, M., et al., 2018. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153-163. Taberlet, P., Coissac, E., Pompanon, F., et al., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14. Tyagi, K., Kumar, V., Singha, D., et al., 2017. DNA Barcoding studies on thrips in India:cryptic species and Species complexes. Sci. Rep. 7, 4898. Tyagi, K., Kumar, V., Kundu, S., et al., 2019. Identification of Indian Spiders through DNA barcoding: cryptic species and species complex. Sci. Rep. 9, 14033. Valentini, A., Pompanon, F., Taberlet, P., 2009. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110-117. Wei, Y.-T., Lee, S.-K., 1985. New material for Chinese leguminosae. Guihaia 5, 157-174. Witt, J.D.S., Threloff, D.L., Hebert, P.D.N., 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol. 15, 3073-3082. Zhang, J., Chen, M., Dong, X., et al., 2015. Evaluation of four commonly used DNA barcoding loci for Chinese medicinal plants of the family Schisandraceae. PloS One 10, e0125574. |