Plant Diversity ›› 2020, Vol. 42 ›› Issue (06): 415-426.DOI: 10.1016/j.pld.2020.07.009
Yi Goua, Zhennan Lia,b, Ruyan Fana, Zuchuan Qiua,b, Lu Wanga,b, Chen Wanga, Yuhua Wanga
收稿日期:
2020-05-02
修回日期:
2020-07-21
出版日期:
2020-12-25
发布日期:
2021-03-03
通讯作者:
Yuhua Wang
基金资助:
Yi Goua, Zhennan Lia,b, Ruyan Fana, Zuchuan Qiua,b, Lu Wanga,b, Chen Wanga, Yuhua Wanga
Received:
2020-05-02
Revised:
2020-07-21
Online:
2020-12-25
Published:
2021-03-03
Contact:
Yuhua Wang
Supported by:
摘要: Hematophagous invertebrates such as mosquitoes, leeches, mites, ticks, lice and bugs cause various problems for humans. Considering reports on insecticide resistance and requirements for improved environmental and toxicological profiles, there is a continuing need to discover and develop new insecticides and repellents. Ethnobotanical surveys of traditional plant-based repellents provide a direct method of identifying plants for potential use. During five field surveys in Bulang, Jinuo and Lahu villages between August 2018 and July 2019, semi-structured interviews were conducted with 237 informants (151 male, 86 female; mean age 63). Frequency of citation, use value, informant consensus factor and Jaccard index were employed to statistically analyze the collected data. A total of 709 use reports relating to 32 plant species and 71 remedies were collected. Similarities and differences between the three groups, as well as the Dai and Hani of Xishuangbanna, who were studied earlier, were shown through network analysis. These five ethnic groups living in the same area have a common understanding of traditional botanical knowledge against hematophagous invertebrates, but each group also possesses unique knowledge. Recording and protecting this traditional knowledge is potentially useful for protecting this cultural diversity and related biodiversity and can also have important practical applications. In this study, traditional knowledge provided us with many new potential plants for follow-up research for the development of new insecticides and repellents, among which Artemisia indica, Nicotiana tabacum and Clausena excavata are the most promising.
Yi Gou, Zhennan Li, Ruyan Fan, Zuchuan Qiu, Lu Wang, Chen Wang, Yuhua Wang. Ethnobotanical survey of plants traditionally used against hematophagous invertebrates by ethnic groups in the mountainous area of Xishuangbanna, Southwest China[J]. Plant Diversity, 2020, 42(06): 415-426.
Yi Gou, Zhennan Li, Ruyan Fan, Zuchuan Qiu, Lu Wang, Chen Wang, Yuhua Wang. Ethnobotanical survey of plants traditionally used against hematophagous invertebrates by ethnic groups in the mountainous area of Xishuangbanna, Southwest China[J]. Plant Diversity, 2020, 42(06): 415-426.
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
最大电子传递速率 Maximum electron transport rate (Jmax, mmol·m-2·s-1) | 269.13 ± 5.22a | 236.68 ± 1.39b | ?236.29 | 354.26 ± 17.73a | 307.91 ± 8.95b | ?306.43 |
饱和光强 Saturated light intensity (PARsat, mmol·m-2·s-1) | — | 1 839.98 ± 50.53 | ?1 800 | — | 1 967.69 ± 110.64 | ?2 000 |
确定系数 Determination coefficient (R2) | 0.999 | 0.999 | — | 0.999 | 0.999 | — |
表1 由非直角双曲线模型(模型I)和光合电子流对光响应机理模型(模型II)拟合两种光照条件下电子传递速率对光的响应曲线(J-I曲线)得到最大电子传递速率(Jmax)和饱和光强(PARsat)两个参数及与它们对应的观测数据(平均值±标准误差, n = 5)
Table 1 Observed data and results fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of electron transport rate (J-I curves) of soybean under two light environments (mean ± SE, n = 5)
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
最大电子传递速率 Maximum electron transport rate (Jmax, mmol·m-2·s-1) | 269.13 ± 5.22a | 236.68 ± 1.39b | ?236.29 | 354.26 ± 17.73a | 307.91 ± 8.95b | ?306.43 |
饱和光强 Saturated light intensity (PARsat, mmol·m-2·s-1) | — | 1 839.98 ± 50.53 | ?1 800 | — | 1 967.69 ± 110.64 | ?2 000 |
确定系数 Determination coefficient (R2) | 0.999 | 0.999 | — | 0.999 | 0.999 | — |
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
初始斜率 Initial slope of A-I curve, α (mmol·mol-1) | 0.061 ± 0.044b | 0.081 ± 0.032a | - | 0.064 ± 0.025a | 0.069 ± 0.025a | - |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28 ± 1.33a | 26.92 ± 1.23b | ?27.23 | 45.56 ± 1.41a | 35.52 ± 1.26b | ?36.17 |
饱和光强 Saturated irradiance, Isat (mmol ·m-2·s-1) | - | 1 569.96 ± 24.89 | ?1 600 | - | 1 998.36 ± 36.45 | ?1 800 |
光补偿点 Light compensation point, Ic (mmol·m-2·s-1) | 40.65 ± 2.85a | 40.83 ± 2.74a | ?41.59 | 51.49 ± 3.52a | 51.62 ± 3.45a | ?51.96 |
暗呼吸速率 Dark respiration, Rd (mmol·m-2 ·s-1) | 2.42 ± 0.87b | 2.99 ± 0.58a | ?3.12 | 3.19 ± 0.56a | 3.45 ± 0.42a | ?3.51 |
确定系数 Determination coefficient, R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
表2 由非直角双曲线模型(模型I)和光合电子流对光响应机理模型(模型II)拟合两种光照条件下光合作用对光的响应曲线(An-I)得到的光合参数及观测数据(平均数±标准误差, n = 5)
Table 2 Observed data and photosynthetic parameters fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of photosynthesis (An-I curves) of soybean under two light environments, respectively (mean ± SE, n = 5).
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
初始斜率 Initial slope of A-I curve, α (mmol·mol-1) | 0.061 ± 0.044b | 0.081 ± 0.032a | - | 0.064 ± 0.025a | 0.069 ± 0.025a | - |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28 ± 1.33a | 26.92 ± 1.23b | ?27.23 | 45.56 ± 1.41a | 35.52 ± 1.26b | ?36.17 |
饱和光强 Saturated irradiance, Isat (mmol ·m-2·s-1) | - | 1 569.96 ± 24.89 | ?1 600 | - | 1 998.36 ± 36.45 | ?1 800 |
光补偿点 Light compensation point, Ic (mmol·m-2·s-1) | 40.65 ± 2.85a | 40.83 ± 2.74a | ?41.59 | 51.49 ± 3.52a | 51.62 ± 3.45a | ?51.96 |
暗呼吸速率 Dark respiration, Rd (mmol·m-2 ·s-1) | 2.42 ± 0.87b | 2.99 ± 0.58a | ?3.12 | 3.19 ± 0.56a | 3.45 ± 0.42a | ?3.51 |
确定系数 Determination coefficient, R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量或计算值 Observed value | 模型I Model I | 模型II Model II | 测量或计算值 Observed value | |
最大电子传递速率 Maximum electron transport rate, Jmax (mmol·m-2·s-1) | 269.13a | 236.68b | 236.29b | 354.26a | 307.91b | 306.43b |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28a | 26.92b | 27.23b | 45.56a | 35.52b | 36.17b |
碳同化电子流 Electron flow of partitioning C assimilation, JC-max (mmol·m-2·s-1) | 166.48a | 155.67a | 155.54a | 219.23a | 203.78a | 203.26a |
光呼吸电子流 Electron flow of partitioning photorespiration assimilation, JO-max (mmol·m-2·s-1) | 102.65a | 81.01b | 80.75b | 135.03a | 104.13b | 103.17b |
表3 分配到碳同化和光呼吸途径的光合电子流
Table 3 Photosynthetic electron flows of partitioning C assimilation and photorespiration pathway
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量或计算值 Observed value | 模型I Model I | 模型II Model II | 测量或计算值 Observed value | |
最大电子传递速率 Maximum electron transport rate, Jmax (mmol·m-2·s-1) | 269.13a | 236.68b | 236.29b | 354.26a | 307.91b | 306.43b |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28a | 26.92b | 27.23b | 45.56a | 35.52b | 36.17b |
碳同化电子流 Electron flow of partitioning C assimilation, JC-max (mmol·m-2·s-1) | 166.48a | 155.67a | 155.54a | 219.23a | 203.78a | 203.26a |
光呼吸电子流 Electron flow of partitioning photorespiration assimilation, JO-max (mmol·m-2·s-1) | 102.65a | 81.01b | 80.75b | 135.03a | 104.13b | 103.17b |
1 |
Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI URL PMID |
2 |
Bellucco V, Marras S, Grimmond CSB, Järvi L, Sirca C, Spano D ( 2017). Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, 236, 113-122.
DOI URL |
3 |
Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ ( 2011). Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56, 927-938.
DOI URL |
4 |
Buckley TN, Diaz-Espejo A ( 2015). Reporting estimates of maximum potential electron transport rate. New Phytologist, 205, 14-17.
DOI URL PMID |
5 |
Calama R, Puértolas J, Madrigal G, Pardos M ( 2013). Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecological Modelling, 251, 9-21.
DOI URL |
6 |
Cheng LL, Fuchigami LH, Breen PJ ( 2001). The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. Journal of Experimental Botany, 52, 1865-1872.
DOI URL |
7 |
Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM ( 2005). Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany, 56, 395-406.
DOI URL PMID |
8 |
dos Santos JUM, de Carvalho GJF, Fearnside PM ( 2013). Measuring the impact of flooding on Amazonian trees: Photosynthetic response models for ten species flooded by hydroelectric dams. Trees, 27, 193-210.
DOI URL |
9 |
Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD ( 2007). Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist, 176, 402-414.
DOI URL PMID |
10 |
Epron D, Godard D, Cornic G, Genty B ( 1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant,Cell & Environment, 18, 43-51.
DOI URL |
11 |
Farquhar GD, Busch FA ( 2017). Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: A model. New Phytologist, 214, 570-584.
DOI URL PMID |
12 |
Farquhar GD, Caemmerers S, Berry JA ( 1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
32 |
Ralph PJ, Gademann R ( 2005). Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, 82, 222-237.
DOI URL |
33 |
Serôdio J, Ezequiel J, Frommlet J, Laviale M, Lavaud J ( 2013). A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence. Plant Physiology, 163, 1089-1102.
DOI URL PMID |
34 |
Shimada A, Kubo T, Tominaga S, Yamamoto M ( 2017). Effect of temperature on photosynthesis characteristics in the passion fruits ‘Summer Queen’ and ‘Ruby Star’. The Horticulture Journal, 86, 194-199.
DOI URL |
35 |
Smith E ( 1937). The influence of light and carbon dioxide on photosynthesis. Journal of General Physiology, 20, 807-830.
DOI URL PMID |
36 |
Sun J, Sun J, Feng Z ( 2015). Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) considering the variation in photosynthesis parameters during developpment. Functional Plant Biology, 42, 1036-1044.
DOI URL |
37 |
Takahashi S, Badger M ( 2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Sciences, 16, 53-59.
DOI URL PMID |
31 |
Quiroz R, Loayza H, Barreda C, Gavilán C, Posadas A, Ramírez DA ( 2017). Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy? European Journal of Agronomy, 82, 104-112.
DOI URL |
30 |
Park KS, Bekhzod K, Kwon JK, Son JE ( 2016). Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories. Horticulture, Environment and Biotechnology, 57, 20-26.
DOI URL |
29 |
Niyogi KK, Truong TB ( 2013). Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 16, 307-314.
DOI URL PMID |
28 | Miao Z, Xu M, Lathrop RG, Wang Y ( 2009). Comparison of the A-Cc curve fitting methods in determining maximum ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell & Environment, 32, 109-122. |
27 |
Mayoral C, Calama R, Sánchez-González M, Pardos M ( 2015). Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests, 46, 485-506.
DOI URL |
26 |
Long SP, Bernacchi CJ ( 2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
DOI URL PMID |
25 |
[ 梁星云, 刘世荣 ( 2017). FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 41, 693-706.]
DOI URL |
Liang XY, Liu SR ( 2017). A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 41, 693-706.
DOI URL |
|
24 |
Li XN, Hao CL, Zhong JW, Liu FL, Cai J, Wang X, Zhou Q, Dai TB, Cao WX, Jiang D ( 2015). Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biology, 15, 1-13.
DOI URL PMID |
23 |
Li XN, Brestic M, Tan DX, Zivcak M, Zhu XC, Liu SQ, Song FB, Reiter RJ, Liu FL ( 2018). Melatonin alleviates low PSI-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 64, DOI: 10.1111/jpi.12453.
DOI URL PMID |
45 |
[ 王海珍, 韩路, 徐雅丽, 牛建龙, 于军 ( 2017). 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 37, 2315-2324.]
DOI URL |
46 |
Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK ( 2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37, 111-121.
DOI URL |
[ 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 ( 2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37, 111-121.]
DOI URL |
|
22 | [ 冷寒冰, 秦俊, 叶康, 奉树成, 高凯 ( 2014). 不同光照环境下荷花叶片光合光响应模型比较. 应用生态学报, 25, 2855-2860.] |
Leng HB, Qin J, Ye K, Feng SC, Gao K ( 2014). Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions. Chinese Journal of Applied Ecology, 25, 2855-2860. | |
21 |
Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson P ( 2007). Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry, 46, 11169-11176.
DOI URL |
20 |
[ 康华靖, 李红, 陶月良, 张海利, 权伟, 欧阳竹 ( 2015). 气体交换与荧光同步测量估算植物光合电子流的分配. 生态学报, 35, 1217-1224.]
DOI URL |
Kang HJ, Li H, Tao YL, Zhang HL, Quan W, Ouyang Z ( 2015). Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation. Acta Ecologica Sinica, 35, 1217-1224.
DOI URL |
|
19 |
Ježilová E, Nožková-Hlaváčková V, Duchoslav M ( 2015). Photosynthetic characteristics of three ploidy levels of Allium oleraceum L. (Amaryllidaceae) differing in ecological amplitude. Plant Species Biology, 30, 212-224.
DOI URL |
18 | [ 胡文海, 叶子飘, 闫小红, 杨旭升 ( 2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究, 37, 281-287.] |
Hu WH, Ye ZP, Yan XH, Yang XS ( 2017). PSII function and intrinsic characteristics of light-harvesting pigment molecules for sun- and shading-leaf in Magnolia grandiflora during overwintering. Bulletin of Botanical Research, 37, 281-287. | |
17 |
Harley PC, Sharkey TD ( 1991). An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 27, 169-178.
DOI URL PMID |
16 |
[ 郭巍, 战莘晔, 殷红, 李雪莹, 吕晓, 杨璐, 王一 ( 2016). UV-B辐射增强对粳稻光合电子传递与光响应特性的影响. 南京农业大学学报, 39, 603-610.]
DOI URL |
Guo W, Zhan SY, Yin H, Li XY, Lü X, Yang L, Wang Y ( 2016). Effect of enhanced UV-B radiation on photosynthetic electron transport and light response characteristics of japonica. Journal of Nanjing Agricultural University, 39, 603-610.
DOI URL |
|
15 |
Gao Y, Xia JB, Chen YP, Zhao YY, Kong QX, Lang Y ( 2017b). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. Journal of Forestry Research, 28, 491-501.
DOI URL |
14 |
Gao S, Yan Q, Chen L, Song Y, Li J, Fu C, Dong M ( 2017 a). Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species. PLOS ONE, 12, e0179899. DOI: 10.1371/journal. pone.0179899.
DOI URL PMID |
13 |
Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
DOI URL PMID |
38 | Tang XL, Cao YH, Gu LH, Zhou BZ ( 2017a). Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645. |
[ 唐星林, 曹永慧, 顾连宏, 周本智 ( 2017a). 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.] | |
39 | Tang XL, Zhou BZ, Zhou Y, Ni X, Cao YH, Gu LH ( 2017b). Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 28, 1482-1488. |
[ 唐星林, 周本智, 周燕, 倪霞, 曹永慧, 顾连宏 ( 2017b). 基于FvCB模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 28, 1482-1488.] | |
40 | Thornley JHM ( 1976). Mathematical Models in Plant Physiology. Academic Press, London. 86-110. |
41 |
Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E ( 1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant, Cell & Environment, 18, 631-640.
DOI URL |
42 | von Caemmerer S ( 2000). Biochemical Models of Leaf Photosynthesis. Techniques in Plant Sciences No. 2. Collingwood. CSIRO Publishing, Australia, Victoria. |
43 |
von Caemmerer S ( 2013). Steady-state models of photosynthesis. Plant, Cell & Environment, 36, 1617-1630.
DOI URL PMID |
44 |
von Caemmerer S, Farquhar GD ( 1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
DOI URL |
45 |
Wang HZ, Han L, Xu YL, Niu JL, Yu J ( 2017). Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 37, 2315-2324.
DOI URL |
47 |
White AJ, Critchley C ( 1999). Rapid light curves: A new fluorescence method to asses the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72.
DOI URL |
48 |
Ye ZP ( 2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
DOI URL |
49 |
Ye ZP, Hu WH, Xiao YA, Fan DY, Yi JH, Duan SH, Yan XH, He L, Zhang SS ( 2014). A mechanistic model of light-response of photosynthetic electron flow and its application. Chinese Journal of Plant Ecology, 38, 1241-1249.
DOI URL |
[ 叶子飘, 胡文海, 肖宜安, 樊大勇, 尹建华, 段世华, 闫小红, 贺俐, 张斯斯 ( 2014). 光合电子流对光响应的机理模型及其应用. 植物生态学报, 38, 1241-1249.]
DOI URL |
|
50 |
Ye ZP, Robakowski P, Suggett JD ( 2013a). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847.
DOI URL PMID |
51 |
Ye ZP, Suggett JD, Robakowski P, Kang HJ ( 2013b). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PSII in C3 and C4 species. New Phytologist, 152, 1251-1262.
DOI URL PMID |
52 | Yin XY, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J ( 2009). Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment, 32, 448-464. |
[1] | Ming-Xiang Li, Yong-Peng Ma, Hong-Xia Zhang, Hong-Zheng Sun, Hong-Hai Su, Sheng-Ji Pei, Zhi-Zhi Du. Repellent, larvicidal and adulticidal activities of essential oil from Dai medicinal plant Zingiber cassumunar against Aedes albopictus[J]. Plant Diversity, 2021, 43(04): 317-323. |
[2] | Jun Yang, Jifeng Luo, Qiliang Gan, Leiyu Ke, Fengming Zhang, Hairu Guo, Fuwei Zhao, Yuehu Wang. An ethnobotanical study of forage plants in Zhuxi County in the Qinba mountainous area of central China[J]. Plant Diversity, 2021, 43(03): 239-247. |
[3] | Huifu Zhuang, Chen Wang, Yanan Wang, Tao Jin, Rong Huang, Zihong Lin, Yuhua Wang. Native useful vascular plants of China: A checklist and use patterns[J]. Plant Diversity, 2021, 43(02): 134-141. |
[4] | Yanqiang Zhao, Zexing Yang, Bayi Lang, Manfred Shao, Wu Meng, Dayuan Xue, Lu Gao, Lixin Yang. Skincare plants of the Naxi of NW Yunnan, China[J]. Plant Diversity, 2020, 42(06): 473-478. |
[5] | Wei Gu, Xiaojiang Hao, Zehuan Wang, Jiayu Zhang, Liejun Huang, Shengji Pei. Ethnobotanical study on medicinal plants from the Dragon Boat Festival herbal markets of Qianxinan, southwestern Guizhou, China[J]. Plant Diversity, 2020, 42(06): 427-433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||