Plant Diversity ›› 2020, Vol. 42 ›› Issue (06): 443-454.DOI: 10.1016/j.pld.2020.12.003
Seyran Palabaş Uzuna, Cennet Kocab
收稿日期:
2020-04-25
修回日期:
2020-12-14
出版日期:
2020-12-25
发布日期:
2021-03-03
通讯作者:
Seyran Palabaş Uzun
Seyran Palabaş Uzuna, Cennet Kocab
Received:
2020-04-25
Revised:
2020-12-14
Online:
2020-12-25
Published:
2021-03-03
Contact:
Seyran Palabaş Uzun
摘要: Most people in the world still use medicinal plants to treat and prevent disease. In Anatolia, studies have shown that people have used plants for centuries to treat many diseases. Herbal markets play an important role in the supply of medicinal plants and the transmission of cultural heritage. In this study, we investigated the traditional uses of medicinal plants traded in Kahramanmaraş herbal markets. We also analyzed the threats that may arise from the use of medicinal plants and the measures that can be taken to protect these plants. For these purposes, ethnomedicinal data were collected using semistructured and open-ended questionnaires of herbalists and local people. Ethnobotanical indices (e.g., Relative Frequency of Citation, Use Value, Relative Importance, and Informant Consensus Factor) were used to quantify the use and cultural importance of medicinal plants sold at Kahramanmaraş herbal markets. We identified 62 taxa (11 imported) of plants that are used in traditional folk medicines. The top three plant taxa sold per year by herbalists at Kahramanmaraş herbal markets are Licorice (Glycyrrhiza glabra; 140 kg), Thyme (Thymus sp.; 109 kg), and Carob (Ceratonia siliqua; 106.5 kg). The plant parts and mode of utilization used most are leaves (28 reports) and infusion (36 reports), respectively. The highest ICF value was detected for endocrine system ailments (0.78), and the next highest two values were lymphatic system (0.75) and respiratory system ailments (0.72). We determined that Urtica dioica, G. glabra, Thymus sp., Mentha x piperita have widely traditional uses, with high ethnobotanical index values and use reports. In addition, according to IUCN criteria, 26 of 62 taxa identified in the research are under threat to various degrees on a global scale.
Seyran Palabaş Uzun, Cennet Koca. Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş[J]. Plant Diversity, 2020, 42(06): 443-454.
Seyran Palabaş Uzun, Cennet Koca. Ethnobotanical survey of medicinal plants traded in herbal markets of Kahramanmaraş[J]. Plant Diversity, 2020, 42(06): 443-454.
土壤含水量(处理水平) Soil water content % FC (The level of drought) | 体积含水量 Soil volumetric water content (%) | 盆栽总质量(平均值±标准偏差) Pot’s mass (mean ± SD) (g) |
---|---|---|
80% FC (水分充足 Sufficient water) | 28.8 | 13β696 ± 97 |
50% FC (轻度干旱 Mild drought) | 18.0 | 12β979 ± 112 |
30% FC (中度干旱 Moderate drought) | 10.8 | 12β357 ± 106 |
15%FC (重度干旱 Severe drought) | 5.4 | 12β070 ± 84 |
表1 不同干旱水平下容器内土壤体积含水量及盆栽总质量
Table 1 Soil volumetric water content of the four moisture gradients and total mass of plant, soil and pot
土壤含水量(处理水平) Soil water content % FC (The level of drought) | 体积含水量 Soil volumetric water content (%) | 盆栽总质量(平均值±标准偏差) Pot’s mass (mean ± SD) (g) |
---|---|---|
80% FC (水分充足 Sufficient water) | 28.8 | 13β696 ± 97 |
50% FC (轻度干旱 Mild drought) | 18.0 | 12β979 ± 112 |
30% FC (中度干旱 Moderate drought) | 10.8 | 12β357 ± 106 |
15%FC (重度干旱 Severe drought) | 5.4 | 12β070 ± 84 |
试验代号 Test code | 土壤水分含量 Soil moisture content (% FC) | 氮水平 N level (g·pot-1) |
---|---|---|
15N0 | 15 | 0 |
15MN | 15 | 1.35 |
15HN | 15 | 2.70 |
30N0 | 30 | 0 |
30MN | 30 | 1.35 |
30HN | 30 | 2.70 |
50N0 | 50 | 0 |
50MN | 50 | 1.35 |
50HN | 50 | 2.70 |
80N0 | 80 | 0 |
80MN | 80 | 1.35 |
80HN | 80 | 2.70 |
表2 干旱胁迫与对应的施氮水平
Table 2 Drought stress gradients and coupled exogenous N inputs designed in the experiment
试验代号 Test code | 土壤水分含量 Soil moisture content (% FC) | 氮水平 N level (g·pot-1) |
---|---|---|
15N0 | 15 | 0 |
15MN | 15 | 1.35 |
15HN | 15 | 2.70 |
30N0 | 30 | 0 |
30MN | 30 | 1.35 |
30HN | 30 | 2.70 |
50N0 | 50 | 0 |
50MN | 50 | 1.35 |
50HN | 50 | 2.70 |
80N0 | 80 | 0 |
80MN | 80 | 1.35 |
80HN | 80 | 2.70 |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 3.35 ± 0.11Cb | 2.23 ± 0.25Cc | 2.60 ± 0.03Cbc | 8.33 ± 0.27Ca | 4.13 ± 2.57C |
MN | 5.77 ± 0.55Bc | 5.97 ± 0.16Bc | 12.93 ± 0.33Bb | 18.48 ± 0.18Ba | 10.79 ± 5.54B | |
HN | 10.88 ± 0.09Ac | 7.43 ± 0.20Ad | 26.90 ± 1.85Ab | 37.74 ± 0.17Aa | 20.74 ± 12.83A | |
平均值 Average value | 6.67 ± 3.34c | 5.21 ± 2.33d | 14.14 ± 10.60b | 21.52 ± 12.94a | ||
F(SW×SN) | 332.84** | |||||
F(SW) | 11β481.98** | |||||
F(SN) | 2β442.89** |
表3 施氮结束后30天桢楠幼树脯氨酸的含量(平均值±标准偏差)
Table 3 Proline content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 3.35 ± 0.11Cb | 2.23 ± 0.25Cc | 2.60 ± 0.03Cbc | 8.33 ± 0.27Ca | 4.13 ± 2.57C |
MN | 5.77 ± 0.55Bc | 5.97 ± 0.16Bc | 12.93 ± 0.33Bb | 18.48 ± 0.18Ba | 10.79 ± 5.54B | |
HN | 10.88 ± 0.09Ac | 7.43 ± 0.20Ad | 26.90 ± 1.85Ab | 37.74 ± 0.17Aa | 20.74 ± 12.83A | |
平均值 Average value | 6.67 ± 3.34c | 5.21 ± 2.33d | 14.14 ± 10.60b | 21.52 ± 12.94a | ||
F(SW×SN) | 332.84** | |||||
F(SW) | 11β481.98** | |||||
F(SN) | 2β442.89** |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 0.516 ± 0.007Bb | 0.536 ± 0.009Bb | 0.605 ± 0.008Aa | 0.612 ± 0.010ABa | 0.568 ± 0.045A |
MN | 0.548 ± 0.005Ab | 0.564 ± 0.011Ab | 0.569 ± 0.009Bb | 0.595 ± 0.013Ba | 0.569 ± 0.020A | |
HN | 0.523 ± 0.009ABc | 0.548 ±0.010 ABc | 0.574 ± 0.008Bb | 0.633 ± 0.036Aa | 0.569 ± 0.046A | |
平均值 Mean | 0.529 ± 0.015d | 0.549 ± 0.015c | 0.583 ± 0.018b | 0.614 ± 0.026a | ||
F(SW×SN) | 6.560** | |||||
F(SW) | 67.479** | |||||
F(SN) | 0.062 |
表4 施氮结束后30天桢楠幼树可溶性糖的含量(平均值±标准偏差)
Table 4 Soluble sugar content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 0.516 ± 0.007Bb | 0.536 ± 0.009Bb | 0.605 ± 0.008Aa | 0.612 ± 0.010ABa | 0.568 ± 0.045A |
MN | 0.548 ± 0.005Ab | 0.564 ± 0.011Ab | 0.569 ± 0.009Bb | 0.595 ± 0.013Ba | 0.569 ± 0.020A | |
HN | 0.523 ± 0.009ABc | 0.548 ±0.010 ABc | 0.574 ± 0.008Bb | 0.633 ± 0.036Aa | 0.569 ± 0.046A | |
平均值 Mean | 0.529 ± 0.015d | 0.549 ± 0.015c | 0.583 ± 0.018b | 0.614 ± 0.026a | ||
F(SW×SN) | 6.560** | |||||
F(SW) | 67.479** | |||||
F(SN) | 0.062 |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 7.57 ± 0.06Aa | 6.86 ± 0.13Ab | 4.61 ± 0.16Cd | 5.53 ± 0.10Cc | 6.14 ± 1.20B |
MN | 6.65 ± 0.05Bb | 5.84 ± 0.13Bc | 5.34 ± 0.48Bd | 7.16 ± 0.06Aa | 6.25 ± 0.77B | |
HN | 5.79 ± 0.03Cc | 6.16 ± 0.38Bb | 7.72 ± 0.14Aa | 6.37 ± 0.21Bb | 6.51 ± 0.79A | |
平均值 Mean | 6.67 ± 0.77a | 6.28 ± 0.50b | 5.89 ± 1.43b | 6.35 ± 0.71c | ||
F(SW×SN) | 99.28** | |||||
F(SW) | 21.61** | |||||
F(SN) | 10.15** |
表5 施氮结束后30天桢楠幼树可溶蛋白的含量(平均值±标准偏差)
Table 5 Soluble protein content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 7.57 ± 0.06Aa | 6.86 ± 0.13Ab | 4.61 ± 0.16Cd | 5.53 ± 0.10Cc | 6.14 ± 1.20B |
MN | 6.65 ± 0.05Bb | 5.84 ± 0.13Bc | 5.34 ± 0.48Bd | 7.16 ± 0.06Aa | 6.25 ± 0.77B | |
HN | 5.79 ± 0.03Cc | 6.16 ± 0.38Bb | 7.72 ± 0.14Aa | 6.37 ± 0.21Bb | 6.51 ± 0.79A | |
平均值 Mean | 6.67 ± 0.77a | 6.28 ± 0.50b | 5.89 ± 1.43b | 6.35 ± 0.71c | ||
F(SW×SN) | 99.28** | |||||
F(SW) | 21.61** | |||||
F(SN) | 10.15** |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 127.49 ± 6.40Ab | 141.71 ± 2.68Aa | 132.09 ± 2.59Ab | 123.57 ± 7.03Ab | 131.21 ± 8.30C |
MN | 112.22 ± 10.23Bb | 130.13 ± 3.08Ba | 110.92 ± 3.12Cb | 101.57 ± 6.07Ac | 113.71 ± 12.07B | |
HN | 116.72 ± 0.08Bab | 115.01 ± 1.02Cb | 122.61 ± 0.96Bab | 125.21 ± 3.07Ba | 119.89 ± 4.60A | |
平均值 Mean | 118.81 ± 9.10bc | 128.95 ± 11.79a | 121.88 ± 9.42b | 116.78 ± 12.43c | ||
F(SW×SN) | 212.35** | |||||
F(SW) | 255.08** | |||||
F(SN) | 945.69** |
表6 施氮结束后30天桢楠幼树过氧化氢的含量(平均值±标准偏差)
Table 6 H2O2 content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 127.49 ± 6.40Ab | 141.71 ± 2.68Aa | 132.09 ± 2.59Ab | 123.57 ± 7.03Ab | 131.21 ± 8.30C |
MN | 112.22 ± 10.23Bb | 130.13 ± 3.08Ba | 110.92 ± 3.12Cb | 101.57 ± 6.07Ac | 113.71 ± 12.07B | |
HN | 116.72 ± 0.08Bab | 115.01 ± 1.02Cb | 122.61 ± 0.96Bab | 125.21 ± 3.07Ba | 119.89 ± 4.60A | |
平均值 Mean | 118.81 ± 9.10bc | 128.95 ± 11.79a | 121.88 ± 9.42b | 116.78 ± 12.43c | ||
F(SW×SN) | 212.35** | |||||
F(SW) | 255.08** | |||||
F(SN) | 945.69** |
指标 Index | 处理 Treatment | 土壤含水量 Soil moisture content | 平均值 Mean | F | ||||
---|---|---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | |||||
SOD活性 SOD activity (U·g-1·min-1) | 氮水平 N level | N0 | 1β251.53 ± 2.25Ab | 1β337.66 ± 24.89Aa | 1β041.02 ± 53.00Cc | 897.28 ± 42.24Bd | 1β131.87 ± 183.48B | F(SW×SN) = 36.74** F(SW) = 161.34** F(SN) = 58.74** |
MN | 1β284.91 ± 1.15Aa | 1β306.73 ± 6.73ABa | 1β143.10 ± 33.87Bb | 1β136.76 ± 16.73Ab | 1β217.87 ± 83.47C | |||
HN | 1β258.43 ± 4.21Ab | 1β278.82 ± 18.54Bb | 1β336.30 ± 37.39Aa | 1β113.63 ± 17.59Ac | 1β246.80 ± 87.83A | |||
平均值 Mean | 1β264.96 ± 15.46b | 1β307.74 ± 30.03a | 1β173.47 ± 134.93c | 1β049.22 ± 116.96d | ||||
POD活性 POD activity (U·g-1·min-1) | 氮水平 N level | N0 | 2β153.65 ± 1.49Bab | 2β043.13 ± 27.43Ab | 2β200.82 ± 39.94Ba | 2β073.00 ± 61.27Bb | 2β117.65 ± 73.54B | F(SW×SN) = 36.19** F(SW) = 24.11** F(SN) = 123.95** |
MN | 1β888.18 ± 39.09Ca | 1β960.08 ± 30.45Aa | 1β749.85 ± 141.03Cb | 1β673.58 ± 17.14Cb | 1β817.92 ± 133.86C | |||
HN | 2β347.99 ± 134.53Ab | 1β720.76 ± 73.13Bc | 2β545.87 ± 62.54Aa | 2β412.04 ± 48.07Ab | 2β256.67 ± 339.69A | |||
平均值 Mean | 2β129.94 ± 211.82a | 1β907.99 ± 150.89c | 2β165.51 ± 354.77a | 2β052.87 ± 322.59b | ||||
CAT活性 CAT activity (U·g-1·s-1) | 氮水平 N level | N0 | 2.90 ± 0.06Ab | 3.15 ± 0.05Aa | 3.10 ± 0.05ABa | 2.60 ± 0.04Bc | 2.93 ± 0.23A | F(SW×SN) = 8.39** F(SW) = 28.39** F(SN) = 21.69** |
MN | 2.52 ± 0.15Bc | 2.74 ± 0.09Cb | 3.02 ± 0.02Ba | 2.75 ± 0.09Bb | 2.75 ± 0.20B | |||
HN | 2.74 ± 0.11Ad | 2.94 ± 0.10Bcd | 3.26 ± 0.09Aa | 3.04 ± 0.10Abc | 3.01 ± 0.21A | |||
平均值 Mean | 2.74 ± 0.21c | 2.94 ± 0.19b | 3.12 ± 0.12a | 2.79 ± 0.21c |
表7 施氮结束后30天桢楠幼树抗氧化酶的活性(平均值±标准偏差)
Table 7 Antioxidant enzyme activity in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
指标 Index | 处理 Treatment | 土壤含水量 Soil moisture content | 平均值 Mean | F | ||||
---|---|---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | |||||
SOD活性 SOD activity (U·g-1·min-1) | 氮水平 N level | N0 | 1β251.53 ± 2.25Ab | 1β337.66 ± 24.89Aa | 1β041.02 ± 53.00Cc | 897.28 ± 42.24Bd | 1β131.87 ± 183.48B | F(SW×SN) = 36.74** F(SW) = 161.34** F(SN) = 58.74** |
MN | 1β284.91 ± 1.15Aa | 1β306.73 ± 6.73ABa | 1β143.10 ± 33.87Bb | 1β136.76 ± 16.73Ab | 1β217.87 ± 83.47C | |||
HN | 1β258.43 ± 4.21Ab | 1β278.82 ± 18.54Bb | 1β336.30 ± 37.39Aa | 1β113.63 ± 17.59Ac | 1β246.80 ± 87.83A | |||
平均值 Mean | 1β264.96 ± 15.46b | 1β307.74 ± 30.03a | 1β173.47 ± 134.93c | 1β049.22 ± 116.96d | ||||
POD活性 POD activity (U·g-1·min-1) | 氮水平 N level | N0 | 2β153.65 ± 1.49Bab | 2β043.13 ± 27.43Ab | 2β200.82 ± 39.94Ba | 2β073.00 ± 61.27Bb | 2β117.65 ± 73.54B | F(SW×SN) = 36.19** F(SW) = 24.11** F(SN) = 123.95** |
MN | 1β888.18 ± 39.09Ca | 1β960.08 ± 30.45Aa | 1β749.85 ± 141.03Cb | 1β673.58 ± 17.14Cb | 1β817.92 ± 133.86C | |||
HN | 2β347.99 ± 134.53Ab | 1β720.76 ± 73.13Bc | 2β545.87 ± 62.54Aa | 2β412.04 ± 48.07Ab | 2β256.67 ± 339.69A | |||
平均值 Mean | 2β129.94 ± 211.82a | 1β907.99 ± 150.89c | 2β165.51 ± 354.77a | 2β052.87 ± 322.59b | ||||
CAT活性 CAT activity (U·g-1·s-1) | 氮水平 N level | N0 | 2.90 ± 0.06Ab | 3.15 ± 0.05Aa | 3.10 ± 0.05ABa | 2.60 ± 0.04Bc | 2.93 ± 0.23A | F(SW×SN) = 8.39** F(SW) = 28.39** F(SN) = 21.69** |
MN | 2.52 ± 0.15Bc | 2.74 ± 0.09Cb | 3.02 ± 0.02Ba | 2.75 ± 0.09Bb | 2.75 ± 0.20B | |||
HN | 2.74 ± 0.11Ad | 2.94 ± 0.10Bcd | 3.26 ± 0.09Aa | 3.04 ± 0.10Abc | 3.01 ± 0.21A | |||
平均值 Mean | 2.74 ± 0.21c | 2.94 ± 0.19b | 3.12 ± 0.12a | 2.79 ± 0.21c |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 0.070β2 ± 0.000β5Ac | 0.074β8 ± 0.001β5Ab | 0.078β3 ± 0.001β8Aa | 0.067β0 ± 0.001β8Bd | 0.072β6 ± 0.004β7A |
MN | 0.067β9 ± 0.002β3ABb | 0.069β8 ± 0.000β8Bb | 0.073β0 ± 0.001β2Ba | 0.069β9 ± 0.000β6Ab | 0.070β2 ± 0.002β2B | |
HN | 0.066β8 ± 0.001β3Bc | 0.071β7 ± 0.001β3Bb | 0.077β0 ± 0.002β5Aa | 0.071β0 ± 0.001β8Ab | 0.071β6 ± 0.004β1A | |
平均值 Mean | 0.068β3 ± 0.002β0c | 0.072β1 ± 0.002β4b | 0.076β1 ± 0.002β9a | 0.069β3 ± 0.002β3c | ||
F(SW×SN) | 6.133β2** | |||||
F(SW) | 43.294β3** | |||||
F(SN) | 7.046β1** |
表8 施氮结束后30天桢楠幼树丙二醛的含量(平均值±标准偏差)
Table 8 Malondialdehyde content in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 0.070β2 ± 0.000β5Ac | 0.074β8 ± 0.001β5Ab | 0.078β3 ± 0.001β8Aa | 0.067β0 ± 0.001β8Bd | 0.072β6 ± 0.004β7A |
MN | 0.067β9 ± 0.002β3ABb | 0.069β8 ± 0.000β8Bb | 0.073β0 ± 0.001β2Ba | 0.069β9 ± 0.000β6Ab | 0.070β2 ± 0.002β2B | |
HN | 0.066β8 ± 0.001β3Bc | 0.071β7 ± 0.001β3Bb | 0.077β0 ± 0.002β5Aa | 0.071β0 ± 0.001β8Ab | 0.071β6 ± 0.004β1A | |
平均值 Mean | 0.068β3 ± 0.002β0c | 0.072β1 ± 0.002β4b | 0.076β1 ± 0.002β9a | 0.069β3 ± 0.002β3c | ||
F(SW×SN) | 6.133β2** | |||||
F(SW) | 43.294β3** | |||||
F(SN) | 7.046β1** |
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 31.67 ± 0.31Bb | 37.46 ± 0.58Ba | 33.24 ± 0.92Bb | 32.73 ± 2.04Ab | 33.77 ± 2.50B |
MN | 39.52 ± 3.95Ab | 45.54 ± 1.56Aa | 35.56 ± 0.62Bc | 32.57 ± 2.75Ac | 38.30 ± 5.52A | |
HN | 41.54 ± 1.64Aa | 37.30 ± 0.61Bb | 41.28 ± 0.72Aa | 33.01 ± 0.04Ac | 38.28 ± 3.72A | |
平均值 Mean | 37.58 ± 5.00b | 40.10 ± 4.18a | 36.69 ± 3.64b | 32.77 ± 1.72c | ||
F(SW×SN) | 13.48** | |||||
F(SW) | 28.52** | |||||
F(SN) | 27.93** |
表9 施氮结束后30天桢楠幼树叶片的相对电导率(平均值±标准偏差)
Table 9 Relative electrical conductivity in Phoebe zhennan seedlings 30 days after the last nitrogen application (mean ± SD)
处理 Treatment | 土壤含水量 Soil moisture content | |||||
---|---|---|---|---|---|---|
80% FC | 50% FC | 30% FC | 15% FC | 平均值 Mean | ||
氮水平 N level | N0 | 31.67 ± 0.31Bb | 37.46 ± 0.58Ba | 33.24 ± 0.92Bb | 32.73 ± 2.04Ab | 33.77 ± 2.50B |
MN | 39.52 ± 3.95Ab | 45.54 ± 1.56Aa | 35.56 ± 0.62Bc | 32.57 ± 2.75Ac | 38.30 ± 5.52A | |
HN | 41.54 ± 1.64Aa | 37.30 ± 0.61Bb | 41.28 ± 0.72Aa | 33.01 ± 0.04Ac | 38.28 ± 3.72A | |
平均值 Mean | 37.58 ± 5.00b | 40.10 ± 4.18a | 36.69 ± 3.64b | 32.77 ± 1.72c | ||
F(SW×SN) | 13.48** | |||||
F(SW) | 28.52** | |||||
F(SN) | 27.93** |
[1] |
Aebi H ( 1984). Catalase in vitro. Methods in Enzymology, 105, 121-126.
DOI URL |
[2] | Blackman CJ, Brodribb TJ, Jordan GJ ( 2010). Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species. Plant, Cell & Environment, 32, 1584-1595. |
[3] |
Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW ( 2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148.
DOI URL PMID |
[4] |
Caprioli M, Krabbe KA, Melone G, Ramløv H, Ricci C, Santo N ( 2004). Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 139, 527-532.
DOI URL PMID |
[5] | Chen LS, Liu XH ( 2001). Effects of water stress on cell wall H +-ATPase activity in leaves of Litchi chinensis Stone. with different drought-resistance. Journal of Tropical and Subtropical Botany, 9(2), 149-153. |
[ 陈立松, 刘星辉 ( 2001). 水分胁迫对抗旱性不同的荔枝叶片细胞壁H +-ATPase活性的影响 . 热带亚热带植物学报, 9(2), 149-153.] | |
[6] | Chen SY ( 1991). Injury of membrane lipid peroxidation to plant cell. Plant Physiology Communication, 27(2), 84-90. |
[ 陈少裕 ( 1991). 膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 27(2), 84-90.] | |
[7] |
Dai YC, Xu KY, Ma K, Zhang Y, Xia GH ( 2015). Physiological responses of the rare and endangered Ardisia violaceaMyrsinaceae) seedlings to progressive drought stress. Acta Ecologica Sinica, 35, 2954-2959.
DOI URL |
[ 代英超, 徐奎源, 马凯, 张云, 夏国华 ( 2015). 珍稀濒危植物堇叶紫金牛对持续干旱的生理响应. 生态学报, 35, 2954-2959.]
DOI URL |
|
[8] |
Dashek WV, Erickson SS ( 1981). Isolation, assay, biosynthesis, metabolism, uptake and cranslocation and function of proline in plant cells and tissues. Botanical Review, 47, 349-385.
DOI URL |
[9] |
Delhaize E, Ryan PR ( 1995). Aluminum toxicity and tolerance in plants. Plant Physiology, 107, 315-321.
DOI URL PMID |
[10] | Fang WP ( 1981). Flora of Sichuan. Sichuan People’s Publishing House, Chengdu. |
[ 方文培 ( 1981). 四川植物志. 四川人民出版社, 成都.] | |
[11] |
Fridorich I ( 1975). Superoxide dismutase. Annual Review of Biochemistry, 44, 147-159.
DOI URL |
[12] | Gao JF ( 2006). Experimental Guidance for Plant Physiology. Higher Education Press,Beijing. 211. |
[ 高俊凤 ( 2006). 植物生理学实验指导. 高等教育出版社, 北京. 211.] | |
[13] |
Giannopolitis CN, Ries SK ( 1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309-314.
DOI URL PMID |
[14] |
Hanson AD, Nelsen CE, Pedersen AR, Everson EH ( 1979). Capacity for proline accumulation during water stress in barley and its implications for breeding for drought resistance. Crop Science, 19, 489-493.
DOI URL |
[15] | Hasio TC ( 1973). Water and Plant Life. Academic Press, New York. 281-303. |
[16] | Hason AD ( 1980). Interpreting the metabolic response of plants to water stress. Hortscience, 15, 623-629. |
[17] |
Heikkala JJ, Papp JTE, Schultz GA, Bewley JD ( 1984). Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisci acid and wounding. Plant Physiology, 76, 270-274.
DOI URL PMID |
[18] |
Hisao TC ( 1973). Plants response to water stress. Annual Review of Plant Physiology, 24, 519-570.
DOI URL |
[19] |
Hulbert C, Funkhouder EA, Soltes EJ, Newton RJ ( 1988). Inhibition of protein synthesis in loblolly pine hypocotyls by mannitol-induced water stress. Tree Physiology, 4, 19-26.
DOI URL PMID |
[20] |
Kocheva KV, Georgiev GI, Kochev VK ( 2014). An improvement of the diffusion model for assessment of drought stress in plant tissues. Physiologia Plantarum, 150, 88-94.
DOI URL PMID |
[21] | Kuhns MR, Gjerstad DH ( 1988). Photosynthate allocation in loblolly pine (Pinus taeda) seedlings as affected by moisture stress. Canadian Journal of Forest Research, 18, 285-291. |
[22] |
Lawlor DW, Cornic G ( 2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25, 275-294.
DOI URL PMID |
[23] | Li HS ( 2012). Modern Plant Physiology. Higher Education Press,Beijing. |
[ 李合生 ( 2012). 现代植物生理学. 高等教育出版社, 北京.] | |
[24] | Li HS, Shun Q, Zhao SJ, Zhang WH ( 2000). Principles and Techniques of Plant Physiology and Biochemistry Experiments. Higher Education Press,Beijing. 164- 165, 258-260. |
[ 李合生, 孙群, 赵世杰, 章文华 ( 2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 164-165, 258-260.] | |
[25] |
Li J ( 2015). Effects of drought stress on soluble proteins of Hordeum vulgare Linn. seedlings. Jiangsu Agricultural Sciences, 43(12), 124-126.
DOI URL |
[ 李洁 ( 2015). 干旱胁迫对青稞幼苗可溶性蛋白的影响. 江苏农业科学, 43(12), 124-126.]
DOI URL |
|
[26] |
Li J, Huang LH, Chen X ( 2015). Physiological response of two Rhododendron simsii seedlings to drought stress and drought resistance evaluation. Southwest China Journal of Agricultural Sciences, 28, 1067-1073.
DOI URL |
[ 李娟, 黄丽华, 陈训 ( 2015). 2种杜鹃对干旱胁迫的生理响应及抗旱性评价. 西南农业学报, 28, 1067-1073.]
DOI URL |
|
[27] | Li N ( 2014). Physiological and Ecological Response of Larix gmelinii Seedlings under Soil Drought Stress and Different Nitrogen Levels. Master degree dissertation, Northeast Forestry University,Harbin. |
[ 李娜 ( 2014). 落叶松幼苗对干旱胁迫及氮添加的生理生态响应. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[28] | Li Q ( 2013). Physiological Responds and Adaptation of Miscanthus sacchariflorus and Miscanthus sinensis to Drought Stress. PhD dissertation, Northeast Forestry University, Harbin. 45. |
[ 李强 ( 2013). 荻和芒对干旱胁迫的生理响应和适应性. 博士学位论文, 东北林业大学, 哈尔滨. 45.] | |
[29] | Li YJ, Li J, Xu P, He HW ( 2014). Physiological responses of Lycium ruthenicum Murr. seedlings to drought stress. Arid Zone Research, 31, 756-762. |
[ 李永洁, 李进, 徐萍, 何宏伟 ( 2014). 黑果枸杞幼苗对干旱胁迫的生理响应. 干旱区研究, 31, 756-762.] | |
[30] |
Liu J, Lü B, Xu LL ( 2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biophysics, 27, 548-551.
DOI URL |
[ 刘俊, 吕波, 徐朗莱 ( 2000). 植物叶片中过氧化氢含量测定方法的改进. 生物化学与生物物理进展, 27, 548-551.]
DOI URL |
|
[31] | Liu S, He Q, Li JY, Su Y, Wu JW ( 2016). Physiological responses of the limestone endemic plant Triadica rotundifolia seedlings to drought stress. Journal of South China Agricultural University, 37(2), 96-100. |
[ 刘珊, 何茜, 李吉跃, 苏艳, 吴俊文 ( 2016). 石漠化树种圆叶乌桕对干旱胁迫的生理响应. 华南农业大学学报, 37(2), 96-100.] | |
[32] | Liu ZQ, Zhang SC ( 1994). Plant Resistance Physiology. China Agriculture Press, . Beijing 84-123. |
[ 刘祖琪, 张石诚 ( 1994). 植物抗性生理学. 中国农业出版社, 北京. 84-123.] | |
[33] |
Lü EE, Zhou XR, Zhou ZY, Zhao GQ ( 2016). Physiological responses of the desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 25(6), 42-50.
DOI URL |
[ 吕娥娥, 周向睿, 周志宇, 赵桂琴 ( 2016). 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 25(6), 42-50.]
DOI URL |
|
[34] | Misra A, Tyler G ( 1999). Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil. Annals of Botany, 84, 401-410. |
[35] | Pan RZ ( 2012). Plant Physiology. Higher Education Press, Beijing. |
[ 潘瑞炽 ( 2012). 植物生理学. 高等教育出版社, 北京.] | |
[36] |
Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B ( 2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163, 361-367.
DOI URL |
[37] | Sun M, An Y, Wang Q, Pan L ( 2010). Effect of water stress and nitrogen application on morphological and physiological character of Zoysia japonica cv. Shanghai. Pratacultural Science, 27(9), 57-63. |
[ 孙明, 安渊, 王齐, 潘磊 ( 2010). 干旱胁迫和施氮对结缕草种群特征和生理特性的影响. 草业科学, 27(9), 57-63.] | |
[38] | Taiz L, Zeiger E ( 2010). Plant Physiology. Sinauer Associates, North Miami Beach, USA. |
[39] |
Taylor CB ( 1996). Proline and water deficit: Ups, downs, ins and outs. Plant Cell, 8, 1221-1224.
DOI URL |
[40] | Tyree MT, Zimmermann MH ( 2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[41] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, & Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[42] | Wu XH, Zheng GP ( 1995). Effect of the moisture content coercive on morphological and physiological process of crops. Journal of Qiqihar Teachers’ College (Natural Science), 15(3), 37-40. |
[ 吴旭红, 郑桂萍 ( 1995). 水分胁迫对作物形态和生理过程的影响. 齐齐哈尔师范学院学报(自然科学版), 15(3), 37-40.] | |
[43] | Xiong QE ( 2003). Experimental Course in Plant Physiology. Sichuan Science and Technology Publishing House, Chengdu.72-73, 85-86, 126-127. |
[ 熊庆娥 ( 2003). 植物生理学实验教程. 四川科学技术出版社, 成都. 72-73, 85-86, 126-127.] | |
[44] |
Yan H, Jia LH, Wang GX ( 2002). Research progress of plant water stress inducible proteins. Chemistry of Life, 22, 165-168.
DOI URL |
(in Chinese with English abstract) [ 颜华, 贾良辉, 王根轩 ( 2002). 植物水分胁迫诱导蛋白的研究进展 . 生命的化学, 22, 165-168.]
DOI URL |
|
[45] | Yang CB, Yao JX, Li SW, Ni HQ, Liu YQ, Zhang YH, Li JH ( 2016). Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage. Journal of Beijing Forestry University, 38(5), 58-66. |
[ 杨传宝, 姚俊修, 李善文, 倪惠菁, 刘元铅, 张有慧, 李际红 ( 2016). 白杨派无性系苗期对干旱胁迫的生长生理响应及抗旱性综合评价. 北京林业大学学报, 38(5), 58-66.] | |
[46] | Yang DG, Liu YX, Zhang Q, Jiang ZZ, Song BG ( 2015). Progress on crops osmotic adjustment and genetic engineering of osmotic stress resistance. Crops, ( 1), 6-13. |
[ 杨德光, 刘永玺, 张倩, 姜籽竹, 宋北光 ( 2015). 作物渗透调节及抗渗透胁迫基因工程研究进展. 作物杂志, ( 1), 6-13.] | |
[47] |
Zhang JX, Kirkham MB ( 1994). Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiology, 35, 785-791.
DOI URL |
[48] | Zhang SQ ( 2011). Tutorial of Experimental Techniques in Plant Physiology. Science Press, Beijing. 203. |
[ 张蜀秋 ( 2011). 植物生理学实验技术教程. 科学出版社, 北京. 203.] | |
[49] | Zhou YL, Liu QR ( 2016). Plant Biology. Higher Education Press, Beijing. |
[ 周云龙, 刘全儒 ( 2016). 植物生物学. 高等教育出版社, 北京.] | |
[50] | Zuo YM, Yang WZ, Yang TM, Yang MQ, Xu ZL, Yang SB, Zhang JY ( 2016). Comparison of resistant physiological index among four species in the Genus Panax under water stress. Crops, ( 3), 84-88. |
[ 左应梅, 杨维泽, 杨天梅, 杨美权, 许宗亮, 杨绍兵, 张金渝 ( 2016). 干旱胁迫下4种人参属植物抗性生理指标的比较. 作物杂志, ( 3), 84-88.] |
[1] | Mustafa Karak?se. An ethnobotanical study of medicinal plants in Güce district, north-eastern Turkey[J]. Plant Diversity, 2022, 44(06): 577-597. |
[2] | Vivian Kathambi, Fredrick Munyao Mutie, Peninah Cheptoo Rono, Neng Wei, Jacinta Ndunge Munyao, Peris Kamau, Robert Wahiti Gituru, Guang-Wan Hu, Qing-Feng Wang. Traditional knowledge, use and conservation of plants by the communities of Tharaka-Nithi County, Kenya[J]. Plant Diversity, 2020, 42(06): 479-487. |
[3] | Wei Gu, Xiaojiang Hao, Zehuan Wang, Jiayu Zhang, Liejun Huang, Shengji Pei. Ethnobotanical study on medicinal plants from the Dragon Boat Festival herbal markets of Qianxinan, southwestern Guizhou, China[J]. Plant Diversity, 2020, 42(06): 427-433. |
[4] | Yong Xiong, Xueyi Sui, Selena Ahmed, Zhi Wang, Chunlin Long. Ethnobotany and diversity of medicinal plants used by the Buyi in eastern Yunnan, China[J]. Plant Diversity, 2020, 42(06): 401-414. |
[5] | Tao Liu, Alex Greenslade, Shengchao Yang. Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age[J]. Plant Diversity, 2017, 39(01): 60-64. |
[6] | Bernadette Montanari. Aromatic, Medicinal Plants and Vulnerability of Traditional Herbal Knowledge in a Berber Community of the High Atlas Mountains of Morocco[J]. Plant Diversity, 2014, 36(03): 388-402. |
[7] | Muhammad Waseem; M. Amin Ullah Shah; Rizwana Aleem Qureshi; Iqbal Muhammad; Rabia Afza; Saeeda Yousaf. Ethnopharmacological Survey of Plants Used for the Treatment of Stomach, Diabetes, and Ophthalmic Diseases in Sudhan Gali , Kashmir , Pakistan[J]. Plant Diversity, 2006, 28(05): 535-542. |
[8] | Farrukh Hussain1, Ilyas Iqbal1, Mufakhirah Jan Durrani2. Ethnobotany of Ghalegay, District Swat, Pakistan[J]. Plant Diversity, 2006, 28(03): 305-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||