Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models:prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223-1232. https://doi.org/10.2307/4123815. Archer, E.R.M., Landman, W.A., Tadross, M.A., et al., 2017. Understanding the evolution of the 2014-2016 summer rainfall seasons in southern Africa:key lessons. Clim. Risk Manag. 16, 22-28. https://doi.org/10.1016/j.crm.2017.03.006. Baum, D.A., 1996. The ecology and conservation of the baobabs of Madagascar. Prim.Rep. 46, 311-327. Baumgartner, J.B., Esperón-Rodríguez, M., Beaumont, L.J., 2018. Identifying in situ climate refugia for plant species. Ecography 41, 1850-1863. https://doi.org/10.1111/ecog.03431. Bell, K.L., Rangan, H., Kull, C.A., et al., 2015. The history of introduction of the African baobab (Adansonia digitata, Malvaceae:Bombacoideae) in the Indian subcontinent. R. Soc. Open Sci. 2, 150370. https://doi.org/10.1098/rsos.150370. Berger, C., Bieri, M., Bradshaw, K., 2019. Linking scales and disciplines:an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management. Clim. Change 156, 139-150. https://doi.org/10.1007/s10584-019-02544-0. Bio, A.M.F., de Becker, P., de Bie, E., et al., 2002. Prediction of plant species distribution in lowland river valleys in Belgium:modelling species response to site conditions. Biodivers. Conserv. 11, 2189-2216. https://doi.org/10.1023/A:1021346712677. Blach-Overgaard, A., Svenning, J.C., Dransfield, J., et al., 2010. Determinants of palm species distributions across africa:the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33, 380-391.https://doi.org/10.1111/j.1600-0587.2010.06273.x. Boria, R.A., Olson, L.E., Goodman, S.M., et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol.Model. 275, 73-77. https://doi.org/10.1016/j.ecolmodel.2013.12.012. Carneiro, L., Lima, A., Machado, R., et al., 2016. Limitations to the use of speciesdistribution models for environmental-impact assessments in the Amazon.PLoS One 11. https://doi.org/10.1371/journal.pone.0146543e0146543. Chaturvedi, R.K., Raghubanshi, A.S., Singh, J.S., 2011. Plant functional traits with particular reference to tropical deciduous forests:a review. J. Biosci. 36, 963-981. https://doi.org/10.1007/s12038-011-9159-1. Cron, G.V., Karimi, N., Glennon, K.L., et al., 2016. One African baobab species or two? A re-evaluation of Adansonia kilima. South Afr. J. Bot. 103, 312. https://doi.org/10.1016/j.sajb.2016.02.036. Douie, C., Whitaker, J., Grundy, I., 2015. Verifying the presence of the newly discovered African baobab, Adansonia kilima, in Zimbabwe through morphological analysis. South Afr. J. Bot. 100, 164-168. https://doi.org/10.1016/j.sajb.2015.05.025. Ebenman, B., Jonsson, T., 2005. Using community viability analysis to identify fragile systems and keystone species. Trends Ecol. Evol. 20, 568-575. https://doi.org/10.1016/j.tree.2005.06.011. Ellison, A.M., Elliott, K., Kloeppel, B.D., et al., 2005. Loss of foundation species:consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479-486. https://doi.org/10.2307/3868635. Ervin, G.N., Holly, D.C., 2011. Examining local transferability of predictive species distribution models for invasive plants:an example with Cogongrass (Imperata cylindrica). Invasive Plant Sci. Manag. 4, 390-401. Feng, J.M., 2008. Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodivers. Sci. 16, 470-476. Fišer, C., Delić, T., Luštrik, R., et al., 2019. Niches within a niche:ecological differentiation of subterranean amphipods across Europe's interstitial waters. Ecography 42, 1212-1223. https://doi.org/10.1111/ecog.03983. Fourcade, Y., 2016. Comparing species distributions modeled from occurrence data and from expert-based range maps. The implication for predicting range shifts with climate change. Ecol. Inf. 36, 8-14. https://doi.org/10.1016/j.ecoinf.2016.09.002. Giannini, T.C., Saraiva, A.M., Alves-Dos-Santos, I., 2010. Ecological niche modeling and geographical distribution of pollinator and plants:a case study of Peponapis fervens (Smith, 1879) (Eucerini:Apidae) and Cucurbita species (Cucurbitaceae).Ecol. Inf. 5, 59-66. https://doi.org/10.1016/j.ecoinf.2009.09.003. Guisan, A., Thuiller, W., 2005. Predicting species distribution:offering more than simple habitat models. Ecol. Lett. 8, 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x. Huang, J., Yu, H., Dai, A., et al., 2017. Drylands face potential threat under 2 ℃ global warming target. Nat. Clim. Change 7, 417-422. https://doi.org/10.1038/nclimate3275. Ingram, J.C., Dawson, T.P., 2005. Climate change impacts and vegetation response on the island of Madagascar. Phil. Trans. R. Soc. A. 363, 55-59. https://doi.org/10.1098/rsta.2004.1476. IPCC, 2014. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IUCN, 2020. IUCN red list of threatened species. Version 2020.1. https://www.iucnredlist.org. Jarnevich, C.S., Stohlgren, T.J., Kumar, S., et al., 2015. Caveats for correlative species distribution modeling. Ecol. Inf. 29, 6-15. https://doi.org/10.1016/j.ecoinf.2015.06.007. Kreft, H., Sommer, J.H., Barthlott, W., 2006. The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29, 21-30.https://doi.org/10.2307/3683492. Kumar, P., 2012. Assessment of the impact of climate change on Rhododendrons in Sikkim Himalayas using MaxEnt modeling:limitations and challenges. Biodivers. Conserv. 21, 1251-1266. https://doi.org/10.1007/s10531-012-0279-1. Kumar, S., Stohlgren, T.J., 2009. MaxEnt Modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia.J. Ecol. Nat. Environ. 1, 94-98. Lisao, K., Geldenhuys, C.J., Chirwa, P.W., 2018. Assessment of the African baobab(Adansonia digitata L.) populations in Namibia:implications for conservation.Glob. Ecol. Conserv. 14, e00386 https://doi.org/10.1016/j.gecco.2018.e00386. Liu, C., White, M., Newell, G., 2011. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34, 232-243. https://doi.org/10.1080/j.1600-0587.2010.06354.x. Mesgaran, M.B., Cousens, R.D., Webber, B.L., 2014. Here be dragons:a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Divers. Distrib. 20, 1147-1159. https://doi.org/10.1111/ddi.12209. Mitchell, T.D., Carter, T.R., Jones, P.D., et al., 2004. A Comprehensive Set of HighResolution Grids of Monthly Climate for Europe and the Globe:the Observed Record (1901-2000) and 16 Scenarios (2001-2100). Tyndall centre for climate change research, Norwich, UK. Patrut, A., Patrut, R.T., Danthu, P., et al., 2016. AMS radiocarbon dating of large za baobabs (Adansonia za) of Madagascar. PLoS One 11, e0146977. https://doi.org/10.1371/journal.pone.0146977. Pearson, K., 1920. Notes on the history of correlation. Biometrika 13, 25-45. https://doi.org/10.2307/2331722. Pettigrew, F.R.S.J.D., Bell, K.L., Bhagwandin, A., et al., 2012. Morphology, ploidy and molecular phylogenetics reveal a new diploid species from Africa in the baobab genus Adansonia (Malvaceae:Bombacoideae). Taxon 61, 1240-1250. https://doi.org/10.1002/tax.616006. Petitpierre, B., Broennimann, O., Kueffer, C., et al., 2017. Selecting predictors to maximize the transferability of species distribution models:lessons from crosscontinental plant invasions. Global Ecol. Biogeogr. 26, 275-287. https://doi.org/10.1111/geb.12530. Philips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026. Radosavljevic, A., Anderson, R.P., 2014. Making better MaxEnt models of species distributions:complexity, over fitting, and evaluation. J. Biogeogr. 41, 629-643.https://doi.org/10.1111/jbi.12227. Root, T.L., Price, J.T., Hall, K.R., et al., 2003. Fingerprints of global warming on wild animals and plants. Nature 421, 57-60. https://doi.org/10.1038/nature01333. Sanchez, A.C., Osborne, P.E., Haq, N., 2010. Identifying the global potential for baobab tree cultivation using ecological niche modeling. Agrofor. Syst. 80, 191-201. https://doi.org/10.1007/s10457-010-9282-2. Schäffler, L., Kappeler, P.M., 2014. Distribution and abundance of the world's smallest primate, Microcebus berthae, in central western Madagascar. Int. J.Primatol. 35, 557-572. https://doi.org/10.1007/s10764-014-9768-2. Sinclair, S.J., White, M.D., Newell, G.R., 2010. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15, 299-305. https://doi.org/10.5751/ES-03089-150108. Tadross, M., Randriamarolaza, L., Rabefitia, Z., et al., 2008. Climate Change in Madagascar; Recent Past and Future. Tech. Rep. World Bank. Vieilledent, G., Cornu, C., Cuní Sanchez, A., et al., 2013. The vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar:towards new conservation priorities. Biol. Conserv. 166, 11-22.https://doi.org/10.1016/j.biocon.2013.06.007. Wiens, J.A., Seavy, N.E., Jongsomjit, D., 2011. Protected areas in climate space:what will the future bring? Biol. Conserv. 144, 2119-2125. https://doi.org/10.1016/j.biocon.2011.05.002. Xu, Y., Shen, Z., Ying, L., et al., 2017. Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Sci. Rep. 7, 1859.https://doi.org/10.1038/s41598-017-02098-0. Yu, F., Skidmore, A.K., Wang, T., et al., 2017. Rhododendron diversity patterns and priority conservation areas in China. Divers. Distrib. 23, 1143-1156. https://doi.org/10.1111/ddi.12607. Zeng, Y., Low, B.W., Yeo, D.C.J., 2016. Novel methods to select environmental variables in MaxEnt:a case study using invasive crayfish. Ecol. Model. 341 https://doi.org/10.1016/j.ecolmodel.2016.09.019. Zurell, D., Thuiller, W., Pagel, J., et al., 2016. Benchmarking novel approaches for modeling species range dynamics. Global Change Biol. 22, 2651-2664. https://doi.org/10.1111/gcb.13251. |