Abdullah, M.F., Shahzadi, I., Ali, Z., et al., 2020. Correlations among oligonucleotide repeats, nucleotide substitutions and insertion-deletion mutations in chloroplast genomes of plant family Malvaceae. J. Systemat. Evol. https://doi.org/10.1111/jse.12585. Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope:an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031. Andrews, S., 2010. FastQC:a Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Aoki, S., Ohi-Toma, T., Li, P., et al., 2017. Phylogenetic, cytological and morphological comparisons of Oxalis subsect. Oxalis (Oxalidaceae) in East Asia. Phytotaxa 324, 266-278. APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG IV. Bot. J. Linn. Soc. 181, 1-20. Barrett, C.F., Baker, W.J., Comer, J.R., et al., 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209, 855-870. Bedoya, A.M., Ruhfel, B.R., Philbrick, C.T., et al., 2019. Plastid genomes of five species of riverweeds (Podostemaceae):structural organization and comparative analysis in Malpighiales. Front. Plant Sci. 10, 1035. Beier, S., Thiel, T., Munch, T., et al., 2017. MISA-web:a web server for microsatellite prediction. Bioinformatics 33, 2583-2585. Darling, A.C.E., 2004. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394-1403. Darriba, D., Taboada, G.L., Doallo, R., et al., 2012. jModelTest 2:more models, new heuristics and parallel computing. Nat. Methods 9, 772. Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15. Dugas, D.V., Hernandez, D., Koenen, E.J., et al., 2015. Mimosoid legume plastome evolution:IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci. Rep. 5, 16958. Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA:computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. Goncalves, D.J., Simpson, B.B., Ortiz, E.M., et al., 2019. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 138, 219-232. Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59-W64. Heibl, C., Renner, S.S., 2012. Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation. Syst. Biol. 61, 823-834. Jansen, R.K., Cai, Z., Raubeson, L.A., et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 19369-19374. Jansen, R.K., Ruhlman, T.A., 2012. Plastid genomes of seed plants. In:Bock, R., Knoop, V. (Eds.), Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Springer, Dordrecht, pp. 103-126. Jin, J.J., Yu, W.B., Yang, J.B., et al., 2018. GetOrganelle:a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. BioRxiv 256479. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., et al., 2001. Reputer:the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642. Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. Mathew, P.M., 1958. Cytology of Oxalidaceae. Cytologia 23, 200-210. Matthews, M.L., Endress, P.K., 2006. Floral structure and systematics in four orders of rosids, including a broad survey of floral mucilage cells. Plant Systemat. Evol. 260, 199-221. Menezes, A.P.A., Resende-Moreira, L.C., Buzatti, R.S.O., et al., 2018. Chloroplast genomes of Byrsonima species (Malpighiaceae):comparative analysis and screening of high divergence sequences. Sci. Rep. 8, 1-12. Millen, R.S., Olmstead, R.G., Adams, K.L., et al., 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13, 645-658. Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc. Gatew. Comput. Environ. 14, 1-8. Moore, M.J., Hassan, N., Gitzendanner, M.A., et al., 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species:insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int. J. Plant Sci. 172, 541-558. Morton, B.R., 1998. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J. Mol. Evol. 46, 449-459. Moura, A.I., Oliveira, Y.R., da Silva, P.H., et al., 2020. Karyotype inconsistencies in the taxonomy of the genus Oxalis (Oxalidaceae). Iheringia Ser. Bot. 75, e2020003. Mower, J.P., Vickrey, T.L., 2018. Structural diversity among plastid genomes of land plants, in:Chaw, S.M., Jansen, R.K. (Eds.), Plastid Genome Evolution, Vol. vol. 85. Academic Press, Amsterdam (The Netherlands) and New York, Elsevier, pp. 2-382. Oberlander, K.C., Dreyer, L.L., Bellstedt, D.U., 2011. Molecular phylogenetics and origins of southern African Oxalis. Taxon 60, 1667-1677. Paim, L.F.N.A., Toledo, C.A.P., da Paz, J.R.L., et al., 2020. Connaraceae:an updated overview of research and the pharmacological potential of 36 species. J. Ethnopharmacol. 261, 112980. Park, S., An, B., Park, S., 2020. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci. Rep. 10, 2720. Park, S., Jansen, R.K., Park, S., 2015. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae. BMC Plant Biol. 15, 40. Peden, J.F., 1999. reportAnalysis of Codon Usage. Ph.D. Thesis, University of Nottingham, Nottingham, UK. Provan, J., Powell, W., Hollingsworth, P.M., 2001. Chloroplast microsatellites:new tools for studies in plant ecology and evolution. Trends Ecol. Evol. 16, 142-147. Qiu, Y.L., Li, L.B., Wang, B., et al., 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J. Systemat. Evol. 48, 391-425. Quax, T.E., Claassens, N.J., Soll, D., et al., 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell. 59, 149-161. Rambaut, A., 2012. FigTree v1.4.2:Molecular Evolution, Phylogenetics and Epidemiology. Edinburgh:University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Ren, T., Li, Z.X., Xie, D.F., et al., 2020. Plastomes of eight Ligusticum species:characterization, genome evolution, and phylogenetic relationships. BMC Plant Biol. 20, 519. Ronquist, F., Teslenko, M., van der Mark, et al., 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. Rosenberg, M.S., Subramanian, S., Kumar, S., 2003. Patterns of transitional mutation biases within and among mammalian genomes. Mol. Biol. Evol. 20, 988-993. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., et al., 2017. DnaSP 6:DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302. Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., et al., 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23. Ruhlman, T.A., Jansen, R.K., 2014. The plastid genomes of flowering plants, in:Maliga, P. (Eds), Chloroplast Biotechnology, vol. vol. 1132. Methods in Molecular Biology (Methods and Protocols), Humana Press, Totowa, NJ, pp. 3-38. Sa, R.D., Vasconcelos, A.L., Santos, A.V., et al., 2019. Anatomy, histochemistry and oxalic acid content of the leaflets of Averrhoa bilimbi and Averrhoa carambola. Rev. Bras. Farmacogn. 29, 11-16. Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, 686-689. Schmickl, R., Liston, A., Zeisek, V., et al., 2015. Phylogenetic marker development for target enrichment from transcriptome and genome skim data:the pipeline and its application in southern African Oxalis (Oxalidaceae). Mol. Ecol. Res. 16, 1124-1135. Shikanai, T., Shimizu, K., Ueda, K., 2001. The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol. 42, 264-273. Singh, K., Gambhir, L., Berma, P.D., et al., 2017. Antimicrobial effects of leaf extracts from Oxalis corymbosa against pathogenic bacterial and fungal isolates. World J. Pharmaceut. Res. 6, 1267-1278. Soltis, D.E., Smith, S.A., Cellinese, N., et al., 2011. Angiosperm phylogeny:17 genes, 640 taxa. Am. J. Bot. 98, 704-730. Stamatakis, A., Hoover, P., Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75, 758-771. Stevens, P.F., Luteyn, J., Oliver, E., et al., 2004. Flowering plants, Dicotyledons:Celastrales, Oxalidales, Rosales, Cornales, Ericales. Ericaceae, in:Kubitzki, K., (Eds), The Families and Genera of Vascular Plants. Vol. vol. 6. Berlin/Heidelberg, Springer, pp. 145-194. Sun, M., Naeem, R., Su, J.X., et al., 2016. Phylogeny of the Rosidae:a dense taxon sampling analysis. J. Systemat. Evol. 54, 363-391. Sun, M., Soltis, D.E., Soltis, P.S., et al., 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83, 156-166. The Plant List, 2013. Version 1.1. Published on the internet. Available at:http://www.theplantlist.org/(accessed: 10 April,2020). Tang, H., Tang, L., Shao, S., et al., 2021. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Bl.) Aver. (Orchidaceae, Epidendroideae, Malaxideae):insights into species divergence and adaptive evolution. Plant Divers. https://doi.org/10.1016/j.pld.2021.01.003. Ueda, M., Nishikawa, T., Fujimoto, M., et al., 2008. Substitution of the gene for chloroplast rps 16 was assisted by generation of a dual targeting signal. Mol. Biol. Evol. 25, 1566-1575. Vaio, M., Gardner, A., Speranza, P., et al., 2016. Phylogenetic and cytogenetic relationships among species of Oxalis section Articulatae (Oxalidaceae). Plant Systemat. Evol. 302, 1253-1265. Valencia-D, J., Murillo-A, J., Orozco, C.I., et al., 2020. Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). Peer J. 8, e8392. Wang, J.H., Moore, M.J., Wang, H., et al., 2021. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene 765. Weng, M.L., Blazier, J.C., Govindu, M., et al., 2014. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 31, 645-659. Wick, R.R., Schultz, M.B., Zobel, J., et al., 2015. Bandage:interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352. Williams, A.V., Boykin, L.M., Howell, K.A., et al., 2015. The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene. PLoS One 10, e0125768. Wu, C.S., Chaw, S.M., 2016. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (Cupressophytes). Genome Biol. Evol. 8, 3740-3750. Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255. Yang, L., Su, D., Chang, X., et al., 2020. Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling. Plant Commun. 1, 100027. Zeng, L., Zhang, N., Zhang, Q., et al., 2017. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 214, 1338-1354. Zhang, D., Gao, F., Jakovlic, I., et al., 2020. PhyloSuite:an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. Zhao, F., Li, B., Drew, B.T., et al., 2020. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae). PLoS One 15, e0232602. Zhao, L., Li, X., Zhang, N., et al., 2016. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol. Phylogenet. Evol. 105, 166-176. Zhu, A., Guo, W., Gupta, S., et al., 2016. Evolutionary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747-1756. Zhu, X.Y., Chase, M.W., Qiu, Y.L., et al., 2007. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evol. Biol. 7, 217. |