Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., et al., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285-1291. Anderegg, W.R.L., Klein, T., Bartlett, M., et al., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U.S.A. 113, 5024-5029. Barigah, T.S., Charrier, O., Douris, M., et al., 2013. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 112, 1431-1437. Blackman, C.J., Brodribb, T.M., Jordan, G.J., 2010. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113-1123. Bouche, P.S., Larter, M., Domec, J.C., et al., 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65, 4419-4431. Bourbia, I., Carins-Murphy, M.R., Gracie, A., et al., 2020. Xylem cavitation isolates leaky flowers during water stress in pyrethrum. New Phytol. 227, 146-155. Bréda, N., Huc, R., Granier, A., et al., 2006. Temperate forest trees and stands under severe drought:a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625-644. Brodribb, T.J., Cochard, H., 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575-584. Brodribb, T.J., Bowman, D.J.M.S., Nichols, S., et al., 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533-542. Brodribb, T.J., Skelton, R.P., McAdam, S.A.M., et al., 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure, New Phytol. 209, 1403-1409. Brodribb, T.J., Carriqui, M., Delzon, S., et al., 2017. Optical measurement of stem xylem vulnerability. Plant Physiol. 174, 2054-2061. Brodribb, T.J., Powers, J., Cochard, H., et al., 2020. Hanging by a thread? Forests and drought. Science 368, 261-266. Boyer, I.S., Westgate., M.E., 2004. Grain yields with limited water. J. Exp. Bot. 55, 2385-2394. Chen, Y.J., Maenpuen, P., Zhang, Y.J., et al., 2020. Quantifying vulnerability to embolism in tropical trees and lianas using five methods:Can discrepancies be explained by xylem structural traits? New Phytol. https://doi.org/10.1111/nph.16927. Choat, B., Ball, M.C., Luly, J.G., et al., 2005. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305-311. Choat, B., Cobb, A.R., Jansen, S., 2008. Structure and function of bordered pits:new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177, 608-626. Choat, B., Jansen, S., Brodribb, T.J., et al., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752-755. Feild, T.S., Chatelet, D.S., Brodribb, T.J., 2009. Giant flowers of Southern magnolia are hydrated by the xylem. Plant Physiol. 150, 1587-1597. Hacke, U.G., Jacobsen, A.L., Pratt, R.B., 2009. Xylem function of arid-land shrubs from California, USA:an ecological and evolutionary analysis. Plant Cell Environ. 32, 1324-1333. Hargrave, K.R., Kolb, K.J., Ewers, F.W., et al., 1994. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol. 126, 695-705. Hochberg, U., Windt, C.W., Ponomarenko, A., et al., 2017. Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems. Plant Physiol. 174, 764-775. Jansen, S., Choat, B., Pletsers, A., 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am. J. Bot. 96, 409-419. Johnson, D.M., McCulloh, K.A., Meinzer, F.C., et al., 2011. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Tree Physiol. 31, 659-668. Lambrecht, S.C., 2013. Floral water costs and size variation in the highly selfing Leptosiphon bicolor (Polemoniaceae). Int. J. Plant Sci. 174, 74-84. Lens, F., Sperry, J.S., Christman, M.A., et al., 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 209-723. Li, S., Lens, F., Espino, S., et al., 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J. 37, 152-171. Memmott, J., Waser, N.M., 2002. Integration of alien plants into a native flower-pollinator visitation web. Proc. Roy. Soc. B Biol. Sci. 269, 2395-2399. Pammenter, N.W., Van der Willigen, C., 1998. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589-593. Passioura, J., 2006. Increasing crop productivity when water is scarce from breeding to field management. Agr. Water Manage. 80, 176-196. Roddy, A.B., Brodersen, C.R., Dawson, T.E., 2016. Hydraulic conductance and the maintenance of water balance in flowers. Plant Cell Environ. 41, 2123-2132. Roddy, A.B., Simonin, K.A, McCulloh, K.A., et al., 2018. Water relations of Calycanthus flowers:hydraulic conductance, capacitance, and embolism resistance. Plant Cell Environ. 41, 2250-2262. Rodriguez-Dominguez, C.M., Carins Murphy, M.R., Lucani, C., et al., 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytol. 218, 1025-1035. Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji:an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. Skelton, R.P., Brodribb, T.J., Choat, B., 2017. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214, 561-569. Skelton, R.P., Dawson, T.E., Thompson, S.E., et al., 2018. Low vulnerability to xylem embolism in leaves and stems of North American Oaks. Plant Physiol. 77, 1066-1077. Sperry, J.S., 2003. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115-S127. Tyree, M.T., Ewers, F.W., 1991. The hydraulic architecture of trees and other woody plants, New Phytol. 119, 345-360. Urli, M., Porte, A.J., Cochard, H., et al., 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 33, 672-683. van der Niet, T., Johnson, S.D., 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol. Evol. 27, 353-361. Zhang, F.P, Brodribb, T.J., 2017. Are flowers vulnerable to xylem cavitation during drought? Proc. Roy. Soc. B Biol. Sci. 284, 20162642. Zhang, F.P., Carins Murphy, M.R., Cardoso, A.A., et al., 2018. Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves. New Phytol. 219, 1224-1234. Zimmermann, M.H., 1978. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot. 56, 2286-2295. Zimmermann, M.H., 1983. Xylem Structure and the Ascent of Sap. Springer Berlin Heidelberg, Berlin/Heidelberg, Germany. |