Abe, H., Urao, T., Ito, T., et al., 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 68-78. https://doi.org/10.1105/tpc.006130. Atchley, W.R., Terhalle, W., Dress, A., 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J. Mol. Evol. 48, 501-516. https://doi.org/10.1007/pl00006494. Bai, G., Yang, D.H., Cao, P., et al., 2019. Genome-Wide identification, gene structure and expression analysis of the MADS-box gene family indicate their function in the development of tobacco (Nicotiana tabacum L.). Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20205043. Bailey, T.L., Boden, M., Buske, F.A., et al., 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208. https://doi.org/10.1093/nar/gkp335 (Web Server issue). Bailey, P.C., Martin, C., Toledo-Ortiz, G., et al., 2003. Update on the basic helix-loophelix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15, 2497-2502. https://doi.org/10.1105/tpc.151140. Brioudes, F., Joly, C., Szecsi, J., et al., 2009. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J. : Cell Mole Bio 60, 1070-1080. https://doi.org/10.1111/j.1365-313X.2009.04023.x. Cheng, X., Xiong, R., Liu, H., et al., 2018. Basic helix-loop-helix gene family: genome wide identification, phylogeny, and expression in Moso bamboo. Plant Physiol. Biochem. 132, 104-119. https://doi.org/10.1016/j.plaphy.2018.08.036. Chinnusamy, V., Ohta, M., Kanrar, S., et al., 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043-1054.https://doi.org/10.1101/gad.1077503. Dombrecht, B., Xue, G.P., Sprague, S.J., et al., 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-2245. https://doi.org/10.1105/tpc.106.048017. El-Gebali, S., Mistry, J., Bateman, A., et al., 2019. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427-D432. https://doi.org/10.1093/nar/gky995. Farquharson, K.L., 2016. A domain in the bHLH transcription factor DYT1 is critical for anther development. Plant Cell 28, 997-998. https://doi.org/10.1105/tpc.16.00331. Fedorov, A., Merican, A.F., Gilbert, W., 2002. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Natl. Acad. Sci. U.S.A. 99, 16128-16133. https://doi.org/10.1073/pnas.242624899. Ferre-D’Amare, A.R., Pognonec, P., Roeder, R.G., et al., 1994. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13, 180-189. Finn, R.D., Clements, J., Arndt, W., et al., 2015. HMMER web server: 2015 update. Nucleic Acids Res. 43, W30-W38. https://doi.org/10.1093/nar/gkv397. Flagel, L.E., Wendel, J.F., 2009. Gene duplication and evolutionary novelty in plants. New Phytol. 183, 557-564. https://doi.org/10.1111/j.1469-8137.2009. 02923.x. Fursova, O.V., Pogorelko, G.V., Tarasov, V.A., 2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429, 98-103. https://doi.org/10.1016/j.gene.2008.10.016. Gonzalez, A., Zhao, M., Leavitt, J.M., et al., 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. : Cell Mole Bio 53, 814-827. https://doi.org/10.1111/j.1365-313X.2007.03373.x. Groszmann, M., Bylstra, Y., Lampugnani, E.R., et al., 2010. Regulation of tissuespecific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. J. Exp. Bot. 61, 1495-1508. https://doi.org/10.1093/jxb/erq015. Guo, X.J., Wang, J.R., 2017. Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat. BMC Plant Biol. 17, 90.https://doi.org/10.1186/s12870-017-1038-y. Hu, B., Jin, J., Guo, A.Y., et al., 2015. Gsds 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296-1297. https://doi.org/10.1093/bioinformatics/btu817. Jones, S., 2004. An overview of the basic helix-loop-helix proteins. Genome Biol. 5, 226. https://doi.org/10.1186/gb-2004-5-6-226. Kondrashov, F.A., Rogozin, I.B., Wolf, Y.I., et al., 2002. Selection in the evolution of gene duplications. Genome Biol. 3. https://doi.org/10.1186/gb-2002-3-2-research0008. RESEARCH0008. Krzywinski, M., Schein, J., Birol, I., et al., 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. https://doi.org/10.1101/gr.092759.109. Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054. Ledent, V., Vervoort, M., 2001. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 11, 754-770. https://doi.org/10.1101/gr.177001. Letunic, I., Bork, P., 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46, D493-D496. https://doi.org/10.1093/nar/gkx922. Li, H., Gao, W., Xue, C., Zhang, Y., Liu, Z., Zhang, Y., Meng, X., Liu, M., Zhao, J., 2019. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genom. 20, 568. https://doi.org/10.1186/s12864-019-5936-2. Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., Guo, J., Liang, W., Chen, L., Yin, J., Ma, H., Wang, J., Zhang, D., 2006. Genome-wide analysis of basic/helix-loophelix transcription factor family in rice and Arabidopsis. Plant Physiol. 141, 1167-1184. https://doi.org/10.1104/pp.106.080580. Li, F., Zhang, H., Wang, S., et al., 2016. Identification of topping responsive proteins in tobacco roots. Front. Plant Sci. 7, 582. https://doi.org/10.3389/fpls.2016. 00582. Lu, R., Zhang, J., Liu, D., et al., 2018. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton(Gossypium hirsutum). BMC Plant Biol. 18, 304. https://doi.org/10.1186/s12870-018-1523-y. Mandaokar, A., Kumar, V.D., Amway, M., et al., 2003. Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol. Biol. 52, 775-786. https://doi.org/10.1023/a:1025045217859. Mao, T.Y., Liu, Y.Y., Zhu, H.H., et al., 2019. Genome-wide analyses of the bHLH gene family reveals structural and functional characteristics in the aquatic plant Nelumbo nucifera. PeerJ 7, e7153. https://doi.org/10.7717/peerj.7153. Massari, M.E., Murre, C., 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell Biol. 20, 429-440. https://doi.org/10.1128/mcb.20.2.429-440.2000. McWilliam, H., Li, W., Uludag, M., et al., 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597-W600. https://doi.org/10.1093/nar/gkt376 (Web Server issue). Moore, A.W., Barbel, S., Jan, L.Y., et al., 2000. A genomewide survey of basic helixloop-helix factors in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 97, 10436-10441.https://doi.org/10.1073/pnas.170301897. Murre, C., McCaw, P.S., Baltimore, D., 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777-783. https://doi.org/10.1016/0092-8674(89)90682-x. Nakata, M., Mitsuda, N., Herde, M., et al., 2013. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25, 1641-1656. https://doi.org/10.1105/tpc.113.111112. Niu, X., Guan, Y., Chen, S., Li, H., 2017. Genome-wide analysis of basic helix-loophelix (bHLH) transcription factors in Brachypodium distachyon. BMC Genom. 18, 619. https://doi.org/10.1186/s12864-017-4044-4. Oh, E., Kim, J., Park, E., et al., 2004. PIL5, a phytochrome-interacting basic helix-loophelix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16, 3045-3058. https://doi.org/10.1105/tpc.104.025163. Oh, E., Yamaguchi, S., Hu, J., et al., 2007. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192-1208. https://doi.org/10.1105/tpc.107.050153. Oh, E., Yamaguchi, S., Kamiya, Y., et al., 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 47, 124-139. https://doi.org/10.1111/j.1365-313X.2006.02773.x. Pires, N., Dolan, L., 2010. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 27, 862-874. https://doi.org/10.1093/molbev/msp288. Riechmann, J.L., Heard, J., Martin, G., et al., 2000. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110. https://doi.org/10.1126/science.290.5499.2105. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., et al., 2003. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512-1517. https://doi.org/10.1016/s0960-9822(03)00558-x. Rushton, P.J., Bokowiec, M.T., Han, S., et al., 2008. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae. Plant Physiol. 147, 280-295. https://doi.org/10.1104/pp.107.114041. Schweizer, F., Fernandez-Calvo, P., Zander, M., et al., 2013. Arabidopsis basic helixloop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117-3132. https://doi.org/10.1105/tpc.113.115139. Shen, W., Cui, X., Li, H., et al., 2019. Genome-wide identification and analyses of bHLH family genes in Brassica napus. Can. J. Plant Sci. 99, 589-598. https://doi.org/10.1139/cjps-2018-0230. Shoji, T., Hashimoto, T., 2011. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol. 52, 1117-1130. https://doi.org/10.1093/pcp/pcr063. Smaczniak, C., Immink, R.G., Angenent, G.C., et al., 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081-3098. https://doi.org/10.1242/dev. 074674. Sun, H., Fan, H.J., Ling, H.Q., 2015. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genom. 16, 9. https://doi.org/10.1186/s12864-014-1209-2. Szecsi, J., Joly, C., Bordji, K., et al., 2006. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25 (16), 3912-3920.https://doi.org/10.1038/sj.emboj.7601270. Tepperman, J.M., Hudson, M.E., Khanna, R., et al., 2004. Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J. 38, 725-739. https://doi.org/10.1111/j.1365-313X.2004.02084.x. Toledo-Ortiz, G., Huq, E., Quail, P.H., 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15, 1749-1770. https://doi.org/10.1105/tpc.013839. Wang, Y., Liu, A., 2020. Genomic characterization and expression analysis of basic helix-loop-helix (bHLH) family genes in traditional Chinese herb Dendrobium officinale. Plants 9. https://doi.org/10.3390/plants9081044. Yang, J., Gao, M., Huang, L., et al., 2017. Identification and expression analysis of the apple (Malus x domestica) basic helix-loop-helix transcription factor family. Sci. Rep. 7, 28. https://doi.org/10.1038/s41598-017-00040-y. Zhang, H.B., Bokowiec, M.T., Rushton, P.J., et al., 2012. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Mol. Plant 5, 73-84. https://doi.org/10.1093/mp/ssr056. Zhang, T., Lv, W., Zhang, H., et al., 2018. Genome-wide analysis of the basic HelixLoop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 18, 235.https://doi.org/10.1186/s12870-018-1441-z. Zhao, K., Li, S., Yao, W., et al., 2018a. Characterization of the basic helix-loop-helix gene family and its tissue-differential expression in response to salt stress in poplar. PeerJ 6, e4502. https://doi.org/10.7717/peerj.4502. Zhao, Q., Xiang, X., Liu, D., et al., 2018b. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front. Plant Sci. 9, 381. https://doi.org/10.3389/fpls.2018.00381. |