Ballaré, C.L., 2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335-363. Ballaré, C.L., Austin, A.T., 2019. Recalculating growth and defense strategies under competition:key roles of photoreceptors and jasmonates. J. Exp. Bot. 70, 3425-3434. Bhosale, R., Jewell, J.B., Hollunder, J., et al., 2013. Predicting gene function from uncontrolled expression variation among individual wild-type Arabidopsis plants. Plant Cell 25 (8), 2865-2877. Browse, J., 2009. Jasmonate passes muster:a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60, 183-205. Cargnel, M.D., Demkura, P.V., Ballaré, C.L., 2014. Linking phytochrome to plant immunity:low red:far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin.New Phytol. 204 (2), 342-354. Castillon, A., Shen, H., Huq, E., 2007. Phytochrome interacting factors:central players in phytochrome-mediated light signaling networks. Trends Plant Sci. 12(11), 514-521. Cerrudo, I., Keller, M.M., Cargnel, M.D., et al., 2012. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol. 158 (4), 2042-2052. Cerrudo, I., Caliri-Ortiz, M.E., Keller, M.M., et al., 2017. Exploring growth-defence trade-offs in Arabidopsis:phytochrome B inactivation requires JAZ10 to suppress plant immunity but not to trigger shade-avoidance responses. Plant Cell Environ. 40 (5), 635-644. Chehab, E.W., Kim, S., Savchenko, T., et al., 2011. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol. 156 (2), 770-778. Chen, M., Chory, J., 2011. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 21 (11), 664-671. Chico, J.M., Fernandez-Barbero, G., Chini, A., et al., 2014. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26 (5), 1967-1980. Courbier, S., Grevink, S., Sluijs, E., et al., 2020. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell Environ. 43 (11), 2769-2781. de Wit, M., Spoel, S.H., Sanchez-Perez, G.F., et al., 2013. Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 75 (1), 90-103. Demkura, P.V., Ballaré, C.L., 2012. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol.Plant 5 (3), 642-652. Ellis, C., Turner, J.G., 2002. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215 (4), 549-556. Fernández-Milmanda, G.L., Crocco, C.D., Reichelt, M., et al., 2020. A light-dependent molecular link between competition cues and defence responses in plants.Native Plants 6 (3), 223-230. Genoud, T., Buchala, A.J., Chua, N.H., et al., 2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J. 31 (1), 87-95. Glazebrook, J., 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227. Guo, Q., Yoshida, Y., Major, I.T., et al., 2018. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. U.S. A. 115 (45), E10768eE10777. Haga, K., Iino, M., 2004. Phytochrome-mediated transcriptional upregulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol. 45 (2), 119-128. Havko, N.E., Major, I.T., Jewell, J.B., et al., 2016. Control of carbon assimilation and partitioning by jasmonate:an accounting of growth-defense balance. Plants 5(1), 7. He, G., Tarui, Y., Iino, M., 2005. A novel receptor kinase involved in jasmonatemediated wound and phytochrome signaling in maize coleoptiles. Plant Cell Physiol. 46 (6), 870-883. Izaguirre, M.M., Mazza, C.A., Biondini, M., et al., 2006. Remote sensing of future competitors:impacts on plant defenses. Proc. Natl. Acad. Sci. U. S. A. 103 (18), 7170-7174. Jiang, Z., Xu, G., Jing, Y., et al., 2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun. 7, 12377. Kami, C., Lorrain, S., Hornitschek, P., et al., 2010. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91, 29-66. Kircher, S., Gil, P., Kozma-Bognár, L., et al., 2002. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541-1555. Leivar, P., Quail, P.H., 2011. PIFs:pivotal components in a cellular signaling hub.Trends Plant Sci. 16 (1), 19-28. Leivar, P., Monte, E., Cohn, M.M., et al., 2012. Phytochrome signaling in green Arabidopsis seedlings:impact assessment of a mutually negative phyB-PIF feedback loop. Mol. Plant 5 (3), 734-749. Leone, M., Keller, M.M., Cerrudo, I., et al., 2014. To grow or defend? Low red:far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol. 204 (2), 355-367. Li, J.Y., Deng, X.G., Chen, L.J., et al., 2015. Involvement of PHYB in resistance to Cucumber mosaic virus in Nicotiana tabacum. Plant Growth Regul. 77, 33-42. Méndez-Bravo, A., Calderón-Vázquez, C., Ibarra-Laclette, E., et al., 2011. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS One 6 (11), e27251. Mengiste, T., 2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50, 267-294. Moreno, J.E., Tao, Y., Chory, J., et al., 2009. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. U. S. A. 106(12), 4935-4940. Qi, J., Zhang, M., Lu, C., et al., 2018. Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Sci. Rep. 8 (1), 277. Radhika, V., Kost, C., Mithofer, A., et al., 2010. Regulation of extra floral nectar secretion by jasmonates in lima bean is light dependent. Proc. Natl. Acad. Sci. U.S. A. 17228-17233. Robson, F., Okamoto, H., Patrick, E., et al., 2010. Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22 (4), 1143-1160. Rowe, H.C., Walley, J.W., Corwin, J., et al., 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis.PLoS Pathog. 6 (4), e1000861. Sakamoto, K., Nagatani, A., 1996. Nuclear localization activity of phytochrome B.Plant J. 10 (5), 859-868. Scalschi, L., Sanmartín, M., Camanes, G., et al., 2015. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J. 81 (2), 304-315. Thines, B., Katsir, L., Melotto, M., et al., 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448 (7154), 661-665. Wang, J., Wu, D., Wang, Y., et al., 2019. Jasmonate action in plant defense against insects. J. Exp. Bot. 70 (13), 3391-3400. Wu, L., Yang, H.Q., 2010. CRYPTOCHROME 1 is implicated in promoting R proteinmediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol.Plant 3 (3), 539-548. Xiang, S., Wu, S., Zhang, H., et al., 2020. The PIFs redundantly control plant defense response against Botrytis cinerea in Arabidopsis. Plants 9 (9), E1246. Xie, D.X., Feys, B.F., James, S., et al., 1998. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280 (5366), 1091-1094. Xie, X.Z., Xue, Y.J., Zhou, J.J., et al., 2011. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol. Plant 4 (4), 688-696. Xu, L., Liu, F., Lechner, E., et al., 2002. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14 (8), 1919-1935. Yamaguchi, R., Nakamura, M., Mochizuki, N., et al., 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145 (3), 437-445. Yan, J., Zhang, C., Gu, M., et al., 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21 (8), 2220-2236. Yang, D.L., Yao, J., Mei, C.S., et al., 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U. S. A. 109 (19), E1192eE1200. Yi, R., Yan, J., Xie, D., 2020. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. Sci. China Life Sci. 63 (7), 943-952. |