Akiyama, K., Matsuzaki, K., Hayashi, H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827. Alaux, P.L., Naveau, F., Declerck, S., et al., 2020. Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. Front. Plant Sci. 11, 602-602. Albornoz, F.E., Dixon, K.W., Lambers, H., 2021. Revisiting mycorrhizal dogmas: are mycorrhizas really functioning as they are widely believed to do? Soil Ecol. Lett. 3, 73-82. Allen, M.F., Allen, E.B., Friese, C.F., 1989. Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol. 111, 45-49. Angelini, P., Tirillini, B., Properzi, A., et al., 2015. Identification and bioactivity of the growth inhibitors in Tuber spp. methanolic extracts. Plant Biosys. An Int. J. Deal. Aspect. Plant Biol. 149, 1000-1009. Babikova, Z., Gilbert, L., Bruce, T.J.A., et al., 2013. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835-843. Barto, E.K., Weidenhamer, J.D., Cipollini, D., et al., 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 17, 633-637. Berrocal-Lobo, M., Molina, A., 2008. Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci. 13, 145-150. Bonfante, P., Genre, A., 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48. Brundrett, M.C., 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37-77. Brundrett, M.C., 1991. Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 21, 171-313. Cosme, M., Fernandez, I., Van der Heijden, M.G.A., et al., 2018. Non-mycorrhizal plants:the exceptions that prove the rule. Trends Plant Sci. 23, 577-587. Cu, S.T.T., Hutson, J., Schuller, K.A., 2005. Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 272, 143-151. Fellbaum, C.R., Mensah, J.A., Cloos, A.J., et al., 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203, 646-656. Fernandez, I., Cosme, M., Stringlis, I.A., et al., 2019. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytol. 223, 867-881. Francis, R., Read, D.J., 1994. The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 159, 11-25. García-Garrido, J.M., Ocampo, J.A., 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53, 1377-1386. Gardner, W.K., Boundy, K.A., 1983. The acquisition of phosphorus by Lupinus albus L. IV. The effect of inter-planting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70, 391-402. Gilbert, L., Johnson, D., 2017. Plant-plant communication through common mycorrhizal networks. In: Becard, G. (Ed.), Advances in Botanical Research. Academic Press, pp. 83-97. Giovannetti, M., Sbrana, C., 1998. Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8, 123-130. Gryndler, M., Cerna, L., Bukovska, P., et al., 2014. Tuber aestivum association with non-host roots. Mycorrhiza 24, 603-610. Harrington, T.J., Mitchell, D.T., 2002. Colonization of root systems of Carex flacca and C. pilulifera by Cortinarius (Dermocybe) cinnamomeus. Mycol. Res. 106, 452-459. He, X.-H., Critchley, C., Bledsoe, C., 2003. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531-567. Helber, N., Wippel, K., Sauer, N., et al., 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus spp. is crucial for the symbiotic relationship with plants. Plant Cell 23, 3812-3823. Hirrel, M., Mehravaran, H., Gerdemann, J., 1978. Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can. J. Bot. 56, 2813-2817. Hoeksema, J.D., 2015. Experimentally testing effects of mycorrhizal networks on plant-plant interactions and distinguishing among mechanisms. In: Horton, T.R.(Ed.), Mycorrhizal Networks. Springer Netherlands, Dordrecht, pp. 255-277. Keim, J., Mishra, B., Sharma, R., et al., 2014. Root-associated fungi of Arabidopsis thaliana and Microthlaspi perfoliatum. Fungal Divers. 66, 99-111. Kohlen, W., Charnikhova, T., Lammers, M., et al., 2012. The tomato carotenoid cleavage dioxygenase8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196, 535-547. Lambers, H., Teste, F., 2013. Interactions between arbuscular mycorrhizal and nonmycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ. 36, 1911-1915. Lambers, H., Albornoz, F., Kotula, L., et al., 2018. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil 424, 11-33. Li, C., Hoffland, E., Kuyper, T.W., et al., 2020. Syndromes of production in intercropping impact yield gains. Nat. Plant. 6, 653-660. López-Ráez, J.A., Fernández, I., García, J.M., et al., 2015. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Sci. 230, 59-69. Mandyam, K.G., Roe, J., Jumpponen, A., 2013. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol. 117, 250-260. Martin-Guay, M.-O., Paquette, A., Dupras, J., et al., 2018. The new Green Revolution:sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615, 767-772. Murata, H., Yamada, A., Maruyama, T., et al., 2013. Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza 23, 235-242. Murata, H., Yamada, A., Yokota, S., et al., 2014. Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa. Mycorrhiza 24, 315-321. Ocampo, J.A., 1986. Vesicular-arbuscular mycorrhizal infection of “host” and “nonhost” plants: effect on the growth responses of the plants and competition between them. Soil Biol. Biochem. 18, 607-610. Pacioni, G., 1991. Effects of Tuber metabolites on the rhizospheric environment. Mycol. Res. 95, 1355-1358. Pérez-Tienda, J., Testillano, P.S., Balestrini, R., et al., 2011. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet. Biol. 48, 1044-1055. Peskan-Berghofer, T., Shahollari, B., Giong, P.H., et al., 2004. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol. Plantarum 122, 465-477. Plattner, I., Hall, I.R., 1995. Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum. Mycol. Res. 99, 1367-1370. Pringle, A., 2009. Mycorrhizal networks. Curr. Biol. 19, R838eR839. Riccioni, C., Rubini, A., Belfiori, B., et al., 2016. Tuber magnatum: the special one. What makes it so different from the other Tuber spp. In: Zambonelli, A., Iotti, M., Murat, C. (Eds.), True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry. Springer International Publishing, Cham, pp. 87-103. Rinaudo, V., Bàrberi, P., Giovannetti, M., et al., 2010. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333, 7-20. Robinson, D., Fitter, A., 1999. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9-13. Rodriguez, R.J., White Jr., J.F., Arnold, A.E., et al., 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314-330. Schneider-Maunoury, L., Deveau, A., Moreno, M., et al., 2020. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 225, 2542-2556. Schneider-Maunoury, L., Leclercq, S., Clément, C., et al., 2018. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol. 31, 59-68. Selosse, M.-A., Dubois, M.-P., Alvarez, N., 2009. Do Sebacinales commonly associate with plant roots as endophytes? Mycol. Res. 113, 1062-1069. Shahollari, B., Vadassery, J., Varma, A., et al., 2007. A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 50, 1-13. Simard, S.W., Durall, D.M., 2004. Mycorrhizal networks: a review of their extent, function, and importance. Can. J. Bot. 82, 1140-1165. Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbiosis. Academic press. Song, Y., Wang, M., Zeng, R., et al., 2019. Priming and filtering of antiherbivore defences among Nicotiana attenuata plants connected by mycorrhizal networks. Plant Cell Environ. 42, 2945-2961. Splivallo, R., Fischer, U., Göbel, C., et al., 2009. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 150, 2018-2029. Splivallo, R., Novero, M., Bertea, C.M., et al., 2007. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 175, 417-424. Streiblova, E., Gryndlerova, H., Gryndler, M., 2012. Truffle brûlé: an efficient fungal life strategy. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 80, 1-8. Stringlis, I.A., Proietti, S., Hickman, R., Van Verk, M.C., Zamioudis, C., Pieterse, C.M.J., 2018. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166-180. Tang, X., Zhang, C., Yu, Y., Shen, J., van der Werf, W., Zhang, F., 2021. Intercropping Legumes and Cereals Increases Phosphorus Use Efficiency; a Meta-Analysis. Plant Soil 460, 89-104. Taschen, E., Sauve, M., Vincent, B., et al., 2019. Insight into the truffle brûlé: tripartite interactions between the black truffle (Tuber melanosporum), holm oak (Quercus ilex) and arbuscular mycorrhizal plants. Plant Soil 446, 577-594. Tester, M., Smith, S., Smith, F., 1987. The phenomenon of "nonmycorrhizal" plants. Can. J. Bot. 65, 419-431. Toju, H., Sato, H., 2018. Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Front. Microbiol. 9, 433-433. van der Heijden, M.G.A., Martin, F.M., Selosse, M.-A., et al., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. Veiga, R.S., Faccio, A., Genre, A., et al., 2013. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926-1937. Veiga, R.S.L., Howard, K., van der Heijden, M.G.A., 2012. No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media. Plant Soil 360, 319-331. Vierheilig, H., Iseli, B., Alt, M., et al., 1996. Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant Soil 183, 131-136. Vishwanathan, K., Zienkiewicz, K., Liu, Y., et al., 2020. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. New Phytol. 228, 728-740. Wagg, C., Veiga, R., van der Heijden, M.G.A., 2015. Facilitation and antagonism in mycorrhizal networks. In: Horton, T.R. (Ed.), Mycorrhizal Networks. Springer Netherlands, Dordrecht, pp. 203-226. Wang, B., Qiu, Y.L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299-363. Wang, Y., Lambers, H., 2020. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447, 135-156. Wang, Y., Ran, W., Lu, B., et al., 2021. Mycorrhization of Quercus mongolica seedlings by Tuber melanosporum alters root carbon exudation and rhizosphere bacterial communities. Plant Soil 467, 391-403. Weiß, M., Waller, F., Zuccaro, A., et al., 2016. Sebacinales e one thousand and one interactions with land plants. New Phytol. 211, 20-40. Wipf, D., Krajinski, F., van Tuinen, D., et al., 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol. 223, 1127-1142. Wurst, S., Vender, V., Rillig, M., 2010. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol. 211, 19-26. Yu, G., Chi, Z.-L., Kappler, A., et al., 2020. Fungal nanophase particles catalyze iron transformation for oxidative stress removal and iron acquisition. Curr. Biol. 30, 2943-2950. Zhang, L., Shi, N., Fan, J., et al., 2018. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environ. Microbiol. 20, 2639-2651. Zouari, I., Salvioli, A., Chialva, M., et al., 2014. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genom. 15, 221. |