[1] Baird, A.S., Taylor, S.H., Pasquet-Kok, J. et al., 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592, 242-247. [2] Baraloto, C., Timothy Paine, C.E., Poorter, L. et al., 2010. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338-1347. [3] Blonder, B., Violle, C., Bentley, L.P. et al., 2011. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91-100. [4] Brodribb, T.J., Feild, T.S., 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175-183. [5] Clarke, V.C., Danila, F.R., von Caemmerer, S., 2021. CO2 diffusion in tobacco:a link between mesophyll conductance and leaf anatomy. Interface Focus 11, 20200040. [6] Diaz, S., Kattge, J., Cornelissen, J.H. et al., 2016. The global spectrum of plant form and function. Nature 529, 167-171. [7] Dong, N., Prentice, I.C., Harrison, S.P. et al., 2017. Biophysical homoeostasis of leaf temperature:a neglected process for vegetation and land-surface modelling. Global Ecol. Biogeogr. 26, 998-1007. [8] Eallonardo, A.S., Leopold, D.J., Fridley, J.D. et al., 2013. Salinity tolerance and the decoupling of resource axis plant traits. J. Veg. Sci. 24, 365-374. [9] Feild, T.S., Brodribb, T.J., 2013. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol. 199, 720-726. [10] Hattenschwiler, S., Joergensen, H.B., 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754-763. [11] Jensen, K.H., Berg-Soerensen, K., Bruus, H. et al., 2016. Sap flow and sugar transport in plants. Rev. Mod. Phys. 88. [12] Kong, D., Fridley, J.D., 2019. Does plant biomass partitioning reflect energetic investments in carbon and nutrient foraging? Funct. Ecol. 33, 1627-1637. [13] Kong, D., Ma, C., Zhang, Q. et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872. [14] Li, L., McCormack, M.L., Ma, C. et al., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 18, 899-906. [15] Li, Y., 2006. Studies on Leaf Anatomy of Some Mangrove Species. XMU. [16] Liang, X., Liu, S., Wang, T. et al., 2021. Metabolomics-driven gene mining and genetic improvement of tolerance to salt-induced osmotic stress in maize. New Phytol. 230, 2355-2370. [17] Litton, C.M., Raich, J.W., Ryan, M.G., 2007. Carbon allocation in forest ecosystems. Global Change Biol. 13, 2089-2109. [18] Long, Y., Kong, D., Chen, Z. et al., 2013. Variation of the linkage of root function with root branch order. PLoS One 8, e57153. [19] Lynch, D.J., Matamala, R., Iversen, C.M. et al., 2013. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytol. 199, 420-430. [20] Mueller, K.E., Diefendorf, A.F., Freeman, K.H. et al., 2010. Appraising the roles of nutrient availability, global change, and functional traits during the angiosperm rise to dominance. Ecol. Lett. 13, E1-E6. [21] Oliveira, R.S., Eller, C.B., Barros, F.V. et al., 2021. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904-923. [22] Petraglia, A., Cacciatori, C., Chelli, S. et al., 2018. Litter decomposition:effects of temperature driven by soil moisture and vegetation type. Plant Soil 435, 187-200. [23] Reich, P.B., 2014. The world-wide 'fast-slow' plant economics spectrum:a traits manifesto. J. Ecol. 102, 275-301. [24] Sack, L., Frole, K., 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. J. Ecol. 87, 483-491. [25] Sack, L., Scoffoni, C., 2013. Leaf venation:structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983-1000. [26] Sack, L., Scoffoni, C., John, G.P. et al., 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J. Exp. Bot. 64, 4053-4080. [27] Sack, L., Scoffoni, C., McKown, A.D. et al., 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3, 837. [28] Scoffoni, C., Rawls, M., McKown, A. et al., 2011. Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture. Plant Physiol. 156, 832-843. [29] Stuart Chapin III, F., Matson, P.A., Vitousek, P.M., 2011. in:Stuart Chapin III, F., Matson, P.A., Vitousek, P.M. (Eds), Principles of terrestrial Ec cosystem ecology, second ed. Water and Energy Balance. Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA. pp. 93-122 [30] Swamy, G.S., 1998. How do plants absorb nutrients from the soil? Resonance 3, 45-52. [31] Taiz, L., Zeiger, E., 2010. Plant Physiology, fifth ed. in:Taiz, L., Zeiger, E. (Eds), Sinauer Associates, Massachusetts U.S.A. pp. 161-198. [32] Terrer, C., Phillips, R.P., Hungate, B.A. et al., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599-603. [33] Umana, M.N., Swenson, N.G., Marchand, P. et al., 2021. Relating leaf traits to seedling performance in a tropical forest:building a hierarchical functional framework. Ecology 102, e03385. [34] Valverde-Barrantes, O.J., Maherali, H., Baraloto, C. et al., 2020. Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytol. 228, 541-553. [35] Wang, D., He, N., Wang, Q. et al., 2016. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere 26, 399-407. [36] Wang, R., Penuelas, J., Li, T. et al., 2021. Natural abundance of (13) C and (15) N provides evidence for plant-soil carbon and nitrogen dynamics in a N-fertilized meadow. J. Ecol. 102, e03348. [37] Woodroffe, C., 1992. Mangrove sediments and geomorphology, in:Robertson, A.I., Alongi, D.M., (eds.), Tropical Mangrove Ecosystems. American Geophysical Union, pp. 7-41. [38] Wright, I.J., Dong, N., Maire, V. et al., 2017. Global climatic drivers of leaf size. Science 357, 917-921. [39] Wright, I.J., Reich, P.B., Westoby, M. et al., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. [40] Xiong, Y., Liao, B., Proffitt, E. et al., 2018. Soil carbon storage in mangroves is primarily controlled by soil properties:a study at Dongzhai Bay, China. Sci. Total Environ. 619-620, 1226-1235. [41] Xiong, Y., Liu, X., Guan, W., Liao, B. et al., 2016. Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant Soil 413, 83-95. [42] Zhang, J.-L., Cao, K.-F., 2009. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Funct. Ecol. 23, 658-667. [43] Zhou, M., Bai, W., Li, Q., Guo, Y. et al., 2021. Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytol. 229, 1481-1491. |