[1] Axelrod, D.I., Al-Shehbaz, I., Raven, P.H., 1996. History of the modern flora of China, in: Zhang, A.-L., Wu, S.-G. (eds), Floristic Characteristics and Diversity of East Asian Plants, Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants (IFCD). Higher Education Press, Beijing, China, pp. 43-55. [2] Bennett, J.R., Mathews, S., 2006. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am. J. Bot. 93, 1039-1051. [3] Bonati, G., 1924. Scrofulariacees nouvelles de l'Indo-Chine. Bull. Soc. Bot. France 71, 1091-1100. [4] Bouckaert, R., Heled, J., Kuhnert, D., et al., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. [5] Chen, X.-H., Xiang, K.-L., Lian, L., et al., 2020. Biogeographic diversification of Mahonia (Berberidaceae): implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Mol. Phylogenet. Evol. 151, 106910. [6] Chen, Y.-S., Deng, T., Zhou, Z., et al., 2018. Is the East Asian flora ancient or not? Natl. Sci. Rev. 5, 920-932. [7] Cusimano, N., Wicke, S., 2016. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytol. 210, 680-693. [8] Darriba, D., Posada, D., Kozlov, A.M., et al., 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291-294. [9] Davis, S.D., Heywood, V.H., Hamilton, A.C., 1995. Centres of Plant Diversity. Vol. 2: Asia, Australasia and the Pacific. WWF/IUCN, Gland, Switzerland. [10] Deng, M., Jiang, X.-L., Hipp, A.L., et al., 2018. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogenet. Evol. 119, 170-181. [11] Dodd, M.E., Silvertown, J., Chase, M.W., 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53, 732-744. [12] Eriksson, O., Bremer, B., 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46, 258-266. [13] Fleming, T.H., Muchhala, N., 2008. Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. J. Biogeogr. 35, 764-780. [14] Ford, D.C., Williams, P.W., 2007. Karst Hydrogeology and Geomorphology. Wiley, London, UK. [15] Frailey, D.C., Chaluvadi, S.R., Vaughn, J.N., et al., 2018. Gene loss and genome rearrangement in the plastids of five hemiparasites in the family Orobanchaceae. BMC Plant Biol. 18, 30. [16] Funamoto, D., 2019. Plant-pollinator interactions in East Asia: a review. J. Pollinat. Ecol. 25, 46-68. [17] Hai, L., Li, X.-Q., Zhang, J.-B., et al., 2022. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: new insights from the dominant Fagaceae trees. J. Integr. Plant Biol. 64, 2126-2134. [18] Hollingsworth, E., 2009. Karst Regions of the World (KROW)-Populating Global Karst Datasets and Generating Maps to Advance the Understanding of Karst Occurrence and Protection of Karst Species and Habitats Worldwide. University of Arkansas, Fayetteville, US. [19] Hong, D.-Y., Yang, H.-B., Jin, C.-L., et al., 1998. Scrophulariaceae, in: Wu, Z-Y, Raven, PH (eds), Flora of China. Science Press, Beijing. [20] Hooker, J.D., Thomson, T., 1864. Description of a new genus of scrophularineae from martaban. Bot. J. Linn. Soc. 8, 11-12. [21] Huang, J., Spicer, R.A., Li, S.-F., et al., 2022. Long-term floristic and climatic stability of northern Indochina: evidence from the oligocene ha long flora, Vietnam. Palaeogeogr., Palaeoclimatol., Palaeoecol. 593, 110930. [22] Huang, J., Su, T., Jia, L.-B., et al., 2018. A fossil fig from the Miocene of southwestern China: indication of persistent deep time karst vegetation. Rev. Palaeobot. Palynol. 258, 133-145. [23] Igea, J., Tanentzap, A.J., 2020. Angiosperm speciation cools down in the tropics. Ecol. Lett. 23, 692-700. [24] Jakob, S.S., Blattner, F.R., 2006. A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol. Biol. Evol. 23, 1602-1612. [25] Jacques, F.M.B., Shi, G., Wang, W., 2011. Reconstruction of neogene zonal vegetation in South China using the integrated plant record (IPR) analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307, 272-284. [26] Jin, J.-J., Yu, W.-B., Yang, J.-B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [27] Kay, K.M., Sargent, R.D., 2009. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40, 637-656. [28] Kong, H.-H., Condamine, F.L., Harris, A., et al., 2017. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol. Ecol. 26, 6414-6429. [29] Kong, H.-H., Condamine, F.L., Yang, L.-H., et al., 2021. Phylogenomic and macroevolutionary evidence for an explosive radiation of a plant genus in the Miocene. Syst. Biol. [30] Kozlov, A.M., Darriba, D., Flouri, T., et al., 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453-4455. [31] Krause, K., 2008. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr. Genet. 54, 111. [32] Kubitzki, K., Krutzsch, W., 1996. Origins of East and south asian plant diversity, in: Zhang, A.-L., Wu, S.-G. (eds), Floristic Characteristics and Diversity of East Asian Plants, Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants (IFCD). Higher Education Press, Beijing, China, pp. 56-70. [33] Li, H.-L., 1947. Relationship and taxonomy of the genus Brandisia. J. Arnold Arbor. 28, 127-136. [34] Li, H.-T., Luo, Y., Gan, L., et al., 2021a. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 232. [35] Li, J.-W., Vasconcelos, P., Duzgoren-Aydin, N., et al., 2007. Neogene weathering and supergene manganese enrichment in subtropical South China: an 40Ar/39Ar approach and paleoclimatic significance. Earth Planet. Sci. 256, 389-402. [36] Li, S.-F., Valdes, P., Farnsworth, A., et al., 2021b. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741. [37] Li, X.-Q., Xiang, X.-G., Jabbour, F., et al., 2022a. Biotic colonization of subtropical East Asian caves through time. Proc. Natl. Acad. Sci. U.S.A. 119, e2207199119. [38] Li, X.-Q., Xiang, X.-G., Zhang, Q., et al., 2022b. Immigration dynamics of tropical and subtropical Southeast Asian limestone karst floras. Proc. R. Soc. B: Biol. Sci. [39] Liu, J.-R., 1997. The development history of the Guangxi tropical karst geomorphology and its sequences. Carsol. Sin./Zhong Guo Yan Rong 16, 332-345. [40] Lu, H.-Y., Guo, Z.-T., 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: a review. Sci. China Earth Sci. 57, 70-79. [41] Malohlava, V., Bocak, L., 2010. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800-4811. [42] McNeal, J.R., Bennett, J.R., Wolfe, A.D., et al., 2013. Phylogeny and origins of holoparasitism in Orobanchaceae. Am. J. Bot. 100, 971-983. [43] Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees, Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. [44] Milne, R., Abbott, R., 2002. The origin and evolution of Tertiary relict flora. Adv. Bot. Res. 38, 281-314. [45] Nickrent, D.L., 2020. Parasitic angiosperms: how often and how many? Taxon 69, 5-27. [46] Olmstead, R.G., Depamphilis, C.W., Wolfe, A.D., et al., 2001. Disintegration of the Scrophulariaceae. Am. J. Bot. 88, 348-361. [47] Oxelman, B., Kornhall, P., Olmstead, R.C., et al., 2005. Further disintegration of Scrophulariaceae. Taxon 54, 411-425. [48] Pelser, P.B., Kennedy, A.H., Tepe, E.J., et al., 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am. J. Bot. 97, 856-873. [49] Pham, H.H., 2000. Brandisia, in: An Illustrated Flora of Vietnam, vol. 3. Young Publishing House, Ho Chi Minh, Vietnam, pp. 901. [50] Proctor, M., Yeo, P., Lack, A., 1996. The Natural History of Pollination. Harper Collins, London, UK. [51] Qu, X.-J., Moore, M.J., Li, D.-Z., et al., 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [52] Rieseberg, L.H., Soltis, D., 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 5, 65-84. [53] Ronquist, F., Teslenko, M., van der Mark, P., et al., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. [54] Sargent, R.D., Ackerly, D.D., 2008. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123-130. [55] Schluter, D., 2016. Speciation, ecological opportunity, and latitude. Am. Nat. 187, 1-18. [56] Sekercioglu, C.H., 2006. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464-471. [57] Small, R., Cronn, R., Wendel, J., 2004. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 17, 145-170. [58] Song, Y.-C., Da, L.-J., 2016. Evergreen broad-leaved forest of East Asia, in: Box, EO (ed), Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer International Publishing, Cham, pp. 101-128. [59] Spicer, R.A., 2017. Tibet, the Himalaya, Asian monsoons and biodiversity - in what ways are they related? Plant Divers. 39, 233-244. [60] Sun, X.-J., Wang, P.-X., 2005. How old is the Asian monsoon system?-palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181-222. [61] Sun, B.-N., Wu, J.-Y., Liu, Y.-S., et al., 2011. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 328-336. [62] Sun, M., Folk, R.A., Gitzendanner, M.A., et al., 2020. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333. [63] Sweeting, M.M., 1995. Karst in China: its Geomorphology and Environment. Springer, Berlin, Germany. [64] Takhtajan, A.L., 1969. Flowering Plants: Origin and Dispersal. Oliver & Boyd, Edinburgh, UK. [65] Tang, C.Q., 2015. Evergreen broad-leaved forests, in: Tang, CQ (ed), The Subtropical Vegetation of Southwestern China: Plant Distribution, Diversity and Ecology. Springer Netherlands, Dordrecht, pp. 49-112. [66] Tang, C.Q., Matsui, T., Ohashi, H., et al., 2018. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488. [67] Tian, Y.-M., Spicer, R.A., Huang, J., et al., 2021. New early oligocene zircon U-Pb dates for the ‘Miocene’ wenshan basin, yunnan, China: biodiversity and paleoenvironment. Earth Planet. Sci. 565, 116929. [68] Tsoong, P.-C., Lu, L.-D., 1979. Scrophulariaceae, in: Flora Reipublicae Popularis Sinicae. Science Press, Beijing, China, pp. 1-242. [69] Turland, N.J., Wiersema, J.H., Barrie, F.R., et al., 2018. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books, Regnum Vegetabile vol. 159, Glashutten. [70] Van der Niet, T., Peakall, R., Johnson, S.D., 2014. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann. Bot. 113, 199-211. [71] Wang, K., Zhang, C., Chen, H., et al., 2019. Karst landscapes of China: patterns, ecosystem processes and services. Landsc. Ecol. 34, 2743-2763. [72] Wang, W.-M., Shu, J.-W., 2013. Cenozoic xeromorphic vegetation in China and its spatial and temporal development in connection with global changes. Palaeoworld 22, 86-92. [73] Wicke, S., Muller, K.F., de Pamphilis, C.W., et al., 2013. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25, 3711. [74] Wiens, J.J., Donoghue, M.J., 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639-644. [75] Wolfe, J.A., 1975. Some aspects of plant geography of the northern hemisphere during the Late Cretaceous and Tertiary. Ann. Mo. Bot. Gard. 62, 264-279. [76] Wu, Z.-Y., 1980. Vegetation of China. Science Press, Beijing, China. [77] Wu, Z.-Y., Wu, S.-G., 1996. A proposal for a new floristic kingdom (realm): the E. Asiatic Kingdom, its delineation and characteristics, in: Zhang, A.-L., Wu, S.-G. (eds), Floristic Characteristics and Diversity of East Asian Plants, Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants (IFCD). Higher Education Press, Beijing, China, pp. 3-42. [78] Xia, Z., Wen, J., Gao, Z., 2019. Does the enigmatic Wightia belong to paulowniaceae (Lamiales)? Front. Times. 10. [79] Xiang, X.-G., Mi, X.-C., Zhou, H.-L., et al., 2016. Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. J. Biogeogr. 43, 1310-1323. [80] Xiao, T.-W., Yan, H.-F., Ge, X.-J., 2022. Plastid phylogenomics of tribe Perseeae (Lauraceae) yields insights into the evolution of East Asian subtropical evergreen broad-leaved forests. BMC Plant Biol. 22, 32. [81] Young, N.D., Steiner, K.E., Depamphilis, C.W., 1999. The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann. Mo. Bot. Gard. 86, 876-893. [82] Yu, W.-B., Randle, C.P., Lu, L., et al., 2018. The hemiparasitic plant Phtheirospermum (Orobanchaceae) is polyphyletic and contains cryptic species in the Hengduan Mountains of Southwest China. Front. Times. 9. [83] Yu, X.-Q., Gao, L.-M., Soltis, D.E., et al., 2017. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 215, 1235-1248. [84] Yu, Y., Blair, C., He, X., 2020. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604-606. [85] Yu, Y., Harris, A.J., Blair, C., et al., 2015. RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46-49. [86] Zeng, C.-X., Hollingsworth, P.M., Yang, J., et al., 2018. Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 14, 43. [87] Zhang, Z.-G., 1980. Karst types in China. Geojournal 4, 541-570. [88] Zhao, L.-C., Wang, Y.-F., Liu, C.-J., et al., 2004. Climatic implications of fruit and seed assemblage from Miocene of Yunnan, southwestern China. Quat. Int. 117, 81-89. [89] Zhou, Q.-M., Jensen, S.R., Liu, G.-L., et al., 2014. Familial placement of Wightia (Lamiales). Plant Systemat. Evol. 300, 2009-2017. [90] Zhu, H., 2007. The karst ecosystem of southern China and its biodiversity. Tropical Forestry 35, 44-47. |