[1] Agrawal, A.A., 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321-326. [2] Ahmad, J., Bashir, H., Bagheri, R., et al., 2017. Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS One 12, e0185118. [3] Anderson, C.M., Treshow, M., 1980. A review of environmental and genetic factors that affect height in Spartina alterniflora Loisel. (Salt marsh cord grass). Estuaries 3, 168-176. [4] Anderson, J.V., Gesch, R.W., Jia, Y., et al., 2005. Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ. 28, 1567-1578. [5] Annapurna, C., Singh, J.S., 2003. Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness. Weed Res. 43, 190-198. [6] Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15. [7] Aspinwall, M.J., Loik, M.E., Resco de Dios, V., et al., 2015. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. Plant Cell Environ. 38, 1752-1764. [8] Bajwa, A.A., Chauhan, B.S., Adkins, S., 2017. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 24, 16186-16194. [9] Bajwa, A.A., Chauhan, B.S., Adkins, S.W., 2018. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 66, 62-70. [10] Basha, S.M.M., Beevers, L., 1975. The development of proteolytic activity and protein degradation during the germination of Pisum sativum L. Planta 124, 77-87. [11] Batish, D.R., Kohli, R.K., Singh, H.P., et al., 2012. Biology, ecology and spread of the invasive weed Parthenium hysterophorus in India, in: Bhatt, J.R., Singh, J.S., Singh, S.P., Tripathi, R.S., Kohli, R.K. (Eds.), Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent. CAB International, UK, pp. 10-18. [12] Blossey, B., Nuzzo, V., Davalos, A., 2017. Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. J. Ecol. 105, 1485-1495. [13] Bolnik, D.I., Amarasekare, P., Araujo, M.S., et al., 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183-192. [14] Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. [15] Bradshaw, A.D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115-155. [16] Caruso, C.M., Maherali, H., Mikulyuk, A., et al., 2005. Genetic variance and covariance for physiological traits in Lobelia: are there constraints on adaptive evolution? Evolution 59, 826-837. [17] Cornelissen, J.H.C., Lavorel, S., Garnier, E., et al., 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335-380. [18] Davidson, A.M., Jennions, M., Nicotra, A.B., 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419-431. [19] de Oliveira, R.R., Ribeiro, T.H.C., Cardon, C.H., et al., 2020. Elevated temperatures impose transcriptional constraints and elicit intraspecific differences between coffee genotypes. Front. Plant Sci. 11, 1113. [20] de Simon, B.F., Cadahia, E., Aranda, I., 2018. Metabolic response to elevated CO2 levels in Pinus pinaster Aiton needles in an ontogenetic and genotypic-dependent way. Plant Physiol. Biochem. 132, 202-212. [21] Domingos, I.F.N., Bilsborrow, P.E., 2021. The effect of variety and sowing date on the growth, development, yield and quality of common buckwheat (Fagopyrum esculentum Moench). Eur. J. Agron. 126, 126264. [22] Donohue, K., 2002. Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83, 1006-1016. [23] Ferrero, M.C., Tecco, P.A., Gurvich, D.E., 2022. Is intraspecific variability an advantage in mountain invasions? Comparing functional trait variation in an invasive and a native woody species along multiple environmental gradients. Biol. Invasions 24, 1393-1412. [24] Fox, R.J., Donelson, J.M., Schunter, C., et al., 2019. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B 374, 20180174. [25] Ghosh, D., Xu, J., 2014. Abiotic stress responses in plant roots: a proteomics perspective. Front. Plant Sci. 5, 6. [26] Hairston Jr, N.G., Ellner, S.P., Geber, M.A. et al., 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114-1127. [27] Hanif, Z., Adkins, S.W., Prentis, P.J., et al., 2012. Characterization of the reproductive behavior and invasive potential of parthenium weed in Australia. Pak. J. Weed Sci. Res. 18, 767-774. [28] He, Y., Liu, X., Huang, B., 2005. Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. J. Am. Soc. Hortic. Sci. 130, 842-847. [29] Hiscox, J.D., Israelstam, G.F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57, 1332-1334. [30] Hufft, R.A., Zelikova, T.J., 2016. Ecological genetics, local adaptation, and phenotypic plasticity in Bromus tectorum in the context of a changing climate, in: Germino, M.J., Chambers, J.C., Brown, C.S. (Eds.), Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US: Causes, Consequences and Management Implications. Springer International publishing, Switzerland, pp. 133-154. [31] Impa, S.M., Vennapusa, A.R., Bheemanahalli, R., et al., 2020. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant Cell Environ. 43, 431-447. [32] Kadam, R.M., Dhavle, S.D., Allapure, R.B., et al., 2009. Evolution of phenological plasticity in Parthenium hysterophorus in response to air pollution stress and unordered environmental variation. Asian J. Environ. Sci. 3, 131-133. [33] Kaur, A., Batish, D.R., Kaur, S., et al., 2017. Phenological behaviour of Parthenium hysterophorus in response to climatic variations according to the extended BBCH scale. Ann. Appl. Biol. 171, 316-326. [34] Kaur, A., Kaur, S., Singh, H.P., et al., 2019. Phenotypic variations alter the ecological impact of invasive alien species: lessons from Parthenium hysterophorus. J. Environ. Manag. 241, 187-197. [35] Kaur, A., Batish, D.R., Chauhan, B.S., et al., 2021. Parthenium hysterophorus, in: Chauhan, B.S. (Ed.), Biology and Management of Problematic Crop Weed Species. Academic Press, USA, pp. 311-333. [36] Kaur, A., Kaur, S., Singh, H.P., et al., 2022. Alterations in phytotoxicity and allelochemistry in response to intraspecific variation in Parthenium hysterophorus. Ecol. Complex. 50, 100999. [37] Koch, K.E., 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-540. [38] Kohli, R.K., Rani, D., 1994. Parthenium hysterophorus- a review. Res. Bull. Panjab Univ. Sci. 44, 105-149. [39] Lamarque, L.J., Lortie, C.J., Porte, A.J., et al., 2015. Genetic differentiation and phenotypic plasticity in life-history traits between native and introduced populations of invasive maple trees. Biol. Invasions 17, 1109-1122. [40] Liao, Z.Y., Scheepens, J.F., Li, Q.M., et al., 2020. Founder effects, post-introduction evolution and phenotypic plasticity contribute to invasion success of a genetically impoverished invader. Oecologia 192, 105-118. [41] Lloyd, J.R., Kossmann, J., Ritte, G., 2005. Leaf starch degradation comes out of the shadows. Trends Plant Sci. 10, 130-137. [42] Loewus, F.A., 1952. Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 24, 219. [43] Lu, J.J., Tan, D.Y., Baskin, C.C., et al., 2016. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual. Sci. Rep. 6, 25076. [44] Mahajan, P, Singh, H.P., Batish, D.R., et al., 2013. Cr(VI) imposed toxicity in maize seedlings assessed in terms of disruption in carbohydrate metabolism. Biol. Trace Elem. Res. 156, 316–322. [45] Marks, M., Prince, S., 1981. Influence of germination date on survival and fecundity in wild lettuce Lactuca serriola. Oikos 36, 326-330. [46] Moore, B.D., Andrew, R.L., Kulheim, C., et al., 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 201, 733-750. [47] Navie, S.C., McFadyen, R.E., Panetta, F.D., et al., 1996. A comparison of the growth and phenology of two introduced biotypes of Parthenium hysterophorus, in: Shepherd, R.H.C. (Ed.), Eleventh Australian Weeds Conference Proceedings. Weed Science Society of Victoria, Australia, pp. 313-316. [48] Nolting, K.M., Prunier, R., Midgley, G.F., et al., 2021. Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus Protea (Proteaceae). Ann. Bot. 127, 519-531. [49] Oduor, A.M., Leimu, R., van Kleunen, M., 2016. Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J. Ecol. 104, 957-968. [50] Picman, A.K., Towers, G.H.N., 1982. Sesquiterpene lactones in various populations of Parthenium hysterophorus. Biochem. Systemat. Ecol. 10, 145-153. [51] Prentis, P.J., Wilson, J.R.U., Dormontt, E.E., et al., 2008. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288-294. [52] Rani, D., Kohli, R.K., 1991. Fresh matter is not an appropriate relation unit for chlorophyll content: experience from experiments on effects of herbicide and allelopathic substance. Photosynthetica 25, 655-658. [53] Rathee, S., Ahmad, M., Sharma, P., et al., 2021. Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation. Environ. Exp. Bot. 184, 104392. [54] Richards, C.L., Bossdorf, O., Muth, N.Z., et al., 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981-993. [55] Richardson, D.M., Pysek, P., Rejmanek, M., et al., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93-107. [56] Roche, J., Mouloungui, Z., Cerny, M., et al., 2019. Effect of sowing dates on fatty acids and phytosterols patterns of Carthamus tinctorius L. Appl. Sci. 9, 2839. [57] Saarinen, T., Lundell, R., Astrom, H., et al., 2011. Parental overwintering history affects the responses of Thlaspi arvense to warming winters in the North. Environ. Exp. Bot. 72, 409-414. [58] Sans, F.X., Masalles, R.M., 1994. Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Can. J. Bot. 72, 10-19. [59] Schaberg, P.G., Snyder, M.C., Shane, J.B., et al., 2000. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol. 20, 549-555. [60] Schlichting, C.D., 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Evol. Syst. 17, 667-693. [61] Shackleton, R.T., Shackleton, C.M., Kull, C.A., 2019. The role of invasive alien species in shaping local livelihoods and human well-being: a review. J. Environ. Manag. 229, 145-157. [62] Chevin, L.M., Leung, C., Le Rouzic, A., et al., 2021. Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map. Genetica, (in press). https://doi.org/10.1007/s10709-021-00135-5. [63] Streb, S., Zeeman, S.C., 2012. Starch metabolism in Arabidopsis. Arabidopsis Book 10, e0160. [64] Tamado, T., Schutz, W., Milberg, P., 2002. Germination ecology of the weed Parthenium hysterophorus in eastern Ethiopia. Ann. Appl. Biol. 140, 263-270. [65] Tanveer, A., Khaliq, A., Ali, H.H., et al., 2015. Interference and management of parthenium: the world's most important invasive weed. Crop Protect. 68, 49-59. [66] van Kleunen, M., Fischer, M., 2005. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 166, 49-60. [67] van Rooyen, M.W., Grobbelaar, N., Theron, G.K., et al., 1992. The ephemerals of Namaqualand: effect of germination date on development of three species. J. Arid Environ. 22, 51-66. [68] Williams, J.D., Groves, R.H., 1980. The influence of temperature and photoperiod on growth and development of Parthenium hysterophorus L. Weed Res. 20, 47-52. [69] Yue, C., Cao, H., Lin, H., et al., 2019. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Planta 250, 281-298. [70] Zhao, Y., Yang, X., Xi, X., et al., 2012. Phenotypic plasticity in the invasion of crofton weed (Eupatorium adenophorum) in China. Weed Sci. 60, 431-439. [71] Zhou, D., Wang, T., Valentine, I., 2005. Phenotypic plasticity of life-history characters in response to different germination timing in two annual weeds. Can. J. Bot. 83, 28-36. |