[1] Abascal, F., Corvelo, A., Cruz, F., et al., 2016. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol. 17, 251. [2] Alexander, D.H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664. [3] Allendorf, F.W., Hohenlohe, P.A., Luikart, G., 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697-709. [4] Bairoch, A., Apweiler, R., 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45-48. [5] Bao, W., Kojima, K., Kohany, 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA, 6, 11. [6] Bassil, N., Boccacci, P., Botta, R., et al., 2013. Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Genet. Resour. Crop Evol. 60, 543-568. [7] Beech, E. 2028.Corylus chinensis. The IUCN Red List of Threatened Species 2018. e.T32394A2817504. doi:https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32394A2817504.en. [8] Beichman, A.C., Huerta-Sanchez, E., Lohmueller, K.E., 2018. Using genomic data to infer historic population dynamics of nonmodel organisms. Annu. Rev. Ecol. Evol. Syst. 49, 433-456. [9] Benazzo, A., Trucchi, E., Cahill, J.A., et al., 2017. Survival and divergence in a small group:the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl. Acad. Sci. U.S.A. 114, E9589-E9597. [10] Bergman, C.M., Quesneville, H., 2007. Discovering and detecting transposable elements in genome sequences. Brief. Bioinform. 8, 382-392. [11] Birney, E., Clamp, M., Durbin, R., 2004. GeneWise and Genomewise. Genome Res. 14, 988-995. [12] Boeckmann, B., Bairoch, A., Apweiler, R., et al., 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370. [13] Bortoluzzi, C., Bosse, M., Derks, M.F.L., et al., 2020. The type of bottleneck matters:insights into the deleterious variation landscape of small managed populations. Evol. Appl. 13, 330-341. [14] Burton, J.N., Adey, A., Patwardhan, R.P., et al., 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119. [15] Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+:architecture and applications. BMC Bioinformatics. 10, 421. [16] Cammen, K.M., Andrews, K.R., Carroll, E.L., et al., 2016. Genomic methods take the plunge:recent advances in high-throughput sequencing of marine mammals. J. Hered. 107, 481-495. [17] Chen, S., Zhou, Y., Chen, Y., et al., 2018. fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34, i884-i890. [18] Chen, Y.J., 2019. Genetic Diversity and Relationship Analysis of Hazelnut Germplasm Resources Based on SSR, SRAP Marker.(Master thesis). Shenyang Agricultural University, Shenyang. [19] Chen, Z., Ai, F., Zhang, J., et al., 2020. Survival in the Tropics despite isolation, inbreeding and asexual reproduction:insights from the genome of the world's southernmost poplar (Populus ilicifolia). Plant J. 103, 430-442. [20] Cheng, H., Concepcion, G.T., Feng, X., et al., 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170-175. [21] Cingolani, P., Platts, A., Wang, L.L., et al., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin)6, 80-92. [22] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics. 27, 2156-2158. [23] De Bie, T., Cristianini, N., Demuth, J.P., et al., 2006. CAFE:a computational tool for the study of gene family evolution. Bioinformatics 22, 1269-1271. [24] Dedato, M.N., Robert, C., Taillon, J., et al., 2022. Demographic history and conservation genomics of caribou (Rangifer tarandus) in Quebec. Evol. Appl. 15, 2043-2053. [25] Dudchenko, O., Batra, S.S., Omer, A.D., et al., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92. [26] Durand, E.Y., Patterson, N., Reich, D., et al., 2011. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239-2252. [27] Durand, N.C., Robinson, J.T., Shamim, M.S., et al., 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99-101. [28] Emms, D.M. Kelly, S., 2019. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238. [29] Erdogan, V., Mehlenbacher, S.A., 2000. Phylogenetic relationships of Corylus species (Betulaceae) based on nuclear ribosomal DNA ITS region and chloroplast matK gene sequences. Syst. Bot. 25, 727-737. [30] Fan, D.M., Yue, J.P., Nie, Z.L., et al., 2013. Phylogeography of Sophora davidii(Leguminosae) across the'Tanaka-Kaiyong Line', an important phytogeographic boundary in southwest China. Mol. Ecol. 22, 4270-4288. [31] Felsenstein, J., 1989. PHYLIP-Phylogeny Inference Package (version 3.2). Cladistics-Int. J. Willi Hennig Soc. 5, 164-166. [32] Fu, R., Zhu, Y., Liu, Y., et al., 2022. Genome-wide analyses of introgression between two sympatric Asian oak species. Nat. Ecol. Evol. 6, 924-935. [33] Funk, W.C., McKay, J.K., Hohenlohe, P.A., et al., 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489-496. [34] Garrison, E. Marth, G., 2012. Haplotype-based variant detection from short-read sequencing. arXiv 1207, 3907. [35] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Trinity:reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644-652. [36] He, X., Wenxu, M., Tiantian, Z., et al., 2023. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial. J. Beijing For. Univ. 45, 11-23. [37] He, X., Wenxu, M., Tiantian, Z., et al., 2022. Prediction of potential distribution of endangered species Corylus chinensis Franch. in climate change context. For. Res. 35, 104-114. [38] Hohenlohe, P.A., Funk, W.C., Rajora, O.P., 2021. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62-82. [39] Hu, J.Y., Hao, Z.Q., Frantz, L., et al., 2020. Genomic consequences of population decline in critically endangered pangolins and their demographic histories. Natl. Sci. Rev. 7, 84-100. [40] Hunter, S., Apweiler, R., Attwood, T.K., et al., 2009. InterPro:the integrative protein signature database. Nucleic Acids Res. 37, D211-D215. [41] Jangjoo, M., Matter, S.F., Roland, J., et al., 2016. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl. Acad. Sci. U.S.A. 113, 10914-10919. [42] Jurka, J., Kapitonov, V.V., Pavlicek, A., et al., 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462-467. [43] Kanehisa, M., Sato, Y., Furumichi, M., et al., 2019. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-D595. [44] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [45] Khodwekar, S., Gailing, O., 2017. Evidence for environment-dependent introgression of adaptive genes between two red oak species with different drought adaptations. Am. J. Bot. 104, 1088-1098. [46] Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360. [47] Kirin, M., McQuillan, R., Franklin, C.S., et al., 2010. Genomic runs of homozygosity record population history and consanguinity. PLoS One 5, e13996. [48] Kono, T.J.Y., Fu, F., Mohammadi, M., et al., 2016. The role of deleterious substitutions in crop genomes. Mol. Biol. Evol. 33, 2307-2317. [49] Korneliussen, T.S., Albrechtsen, A., Nielsen, R., 2014. ANGSD:analysis of next generation sequencing data. BMC Bioinformatics 15, 1-13. [50] Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM., arXiv. 1303, 3997. [51] Li, H. Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature. 475, 493. [52] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25, 2078-2079. [53] Li, M., Chen, S., Shi, S., et al., 2015. High genetic diversity and weak population structure of Rhododendron jinggangshanicum, a threatened endemic species in Mount Jinggangshan of China. Biochem. Syst. Ecol. 58, 178-186. [54] Lidgard, S., Love, A.C., 2018. Rethinking living fossils. Bioscience 68, 760-770. [55] Liu, B., Shi, Y., Yuan, J., et al., 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Quant. Biol. 35, 62-67. [56] Liu, D., Zhang, L., Wang, J., et al., 2020. Conservation genomics of a threatened Rhododendron:contrasting patterns of population structure revealed from neutral and selected SNPs. Front. Genet. 11, 757. [57] Lu, Z.Q., 2017. Species Delimitation in the Subfamily Coryloideae of Betulaceae in China.(PhD thesis). Lanzhou University, Lanzhou. [58] Ma, H., Liu, Y., Liu, D., et al., 2021a. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. Plant J. 107, 1533-1545. [59] Ma, Y., Chen, G., Edward Grumbine, R., et al., 2013. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 22, 803-809. [60] Ma, Y., Liu, D., Wariss, H.M., et al., 2022. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Mol. Ecol. 31, 767-779. [61] Ma, Y., Wang, J., Hu, Q., et al., 2019. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun. Biol. 2, 213. [62] Ma Y.P., Wariss, H.M., Liao R.L., et al., 2021b. Genome-wide analysis of butterfly bush in three uplands provides insights into biogeography, demography and speciation. New Phytol. 232, 1463-1476. [63] Marcais, G., Kingsford, C., 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27, 764-770. [64] Marsden, C.D., Ortega-Del Vecchyo, D., O'Brien, D.P., et al., 2016. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. U.S.A. 113, 152-157. [65] Martin, S.H., Davey, J.W., Jiggins, C.D., 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244-257. [66] McKenna, A., Hanna, M., Banks, E., et al., 2010. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303. [67] Miao, B., Wang, Z., Li, Y., 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan Mastiff by introgression of the gray wolf from the Tibetan Plateau. Mol. Biol. Evol. 34, 734-743. [68] Nguyen, L.T., Schmidt, H.A., Arndt, V.H., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [69] Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143-1155. [70] Patterson, N., Moorjani, P., Luo, Y., et al., 2012. Ancient admixture in human history. Genetics 192, 1065. [71] Pigg, K.B., Manchester, S.R., Wehr, W.C., 2003. Corylus, Carpinus, and Palaeocarpinus(Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. Int. J. Plant Sci. 164, 807-822. [72] Pimm, S.L., Jenkins, C.N., Abell, R., et al., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752. [73] Potter, S.C., Luciani, A., Eddy, S.R., et al., 2018. HMMER web server:2018 update. Nucleic Acids Res. 46, W200-W204. [74] Price, A.L., Jones, N.C., Pevzner, P.A., 2005. De novo identification of repeat families in large genomes. Bioinformatics 21, i351-i358. [75] Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. [76] Roach, M.J., Schmidt, S.A., Borneman, A.R., 2018. Purge Haplotigs:allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19, 460. [77] Salojarvi, J., Smolander, O.P., Nieminen, K., et al. 2017. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904-912. [78] Setoguchi, H., Mitsui, Y., Ikeda, H., et al., 2011. Genetic structure of the critically endangered plant Tricyrtis ishiiana(Convallariaceae) in relict populations of Japan. Conserv. Genet. 12, 491-501. [79] Sim, N.L., Kumar, P., Hu, J., et al., 2012. SIFT web server:predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452-W457. [80] Simao, F.A., Waterhouse, R.M., Panagiotis, I., et al., 2015. BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 3210-3212. [81] Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. [82] Stanke, M., Keller, O., Gunduz, I., et al., 2006. AUGUSTUS:ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435-W439. [83] Stone, B.W., Ward, A., Farenwald, M., et al., 2019. Genetic diversity and population structure in Cary's Beardtongue Penstemon caryi(Plantaginaceae), a rare plant endemic to the eastern Rocky Mountains of Wyoming and Montana. Conserv. Genet. 20, 1149-1161. [84] Suarez-Gonzalez, A., Hefer, C.A., Lexer, C., et al., 2017. Introgression from Populus balsamifera underlies adaptively significant variation and range boundaries in P. trichocarpa. New Phytol. 217, 416. [85] Sun, W.B., Ma, Y.P., Blackmore, S., 2019. How a new conservation action concept has accelerated plant conservation in China. Trends Plant Sci. 24, 4-6. [86] Talavera, G. Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [87] Tempel, S., 2012. Using and understanding repeat masker. In:Bigot, Y.(ed.). Mobile Genetic Elements:Protocols and Genomic Applications Methods in Molecular Biology. Totowa, NJ:Humana Press, pp. 29-51. [88] Vaser, R., Adusumalli, S., Leng, S.N., et al., 2016. SIFT missense predictions for genomes. Nat. Protoc. 11, 1-9. [89] Wang, J., 2004. Application of the one-migrant-per-generation rule to conservation and management. Conserv. Biol. 18, 332-343. [90] Wei, X.Z., Dong, H.E., Jiang, M.X., et al., 2009. Characteristics of riparian rare plant communities on the Shennongjia Mountains, Central China. J. Wuhan Bot. Res. 27, 607-616. [91] Werth, Alexander, J., Shear, William, A., 2014. The evolutionary truth about living fossils. Am. Sci. 102, 434-443. [92] Whitcher, I.N., Wen, J., 2001. Phylogeny and biogeography of Corylus(Betulaceae):inferences from ITS sequences. Syst. Bot. 26, 283-298. [93] Xu, Z., Wang, H., 2007. LTR_FINDER:an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268. [94] Yang, F., Cai, L., Dao, Z., et al., 2022a. Genomic data reveals population genetic and demographic history of Magnolia fistulosa(Magnoliaceae), a plant species with extremely small populations in Yunnan Province, China. Front. Plant Sci. 13, 811312. [95] Yang, J., Lee, S.H., Goddard, M.E., et al., 2011. GCTA:a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82. [96] Yang, L., Wei, F., Zhan, X., et al., 2022b. Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened Takins. Mol. Biol. Evol., 39, msac111. [97] Yang, Y., Ma, T., Wang, Z., et al., 2018. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449. [98] Yang, Z., 2007. PAML 4:phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591. [99] Zhang, C., Dong, S.S., Xu, J.Y., et al., 2019. PopLDdecay:a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788. [100] Zhao, J.L., Gugger, P.F., Xia, Y.M., et al., 2016. Ecological divergence of two closely related Roscoea species associated with late Quaternary climate change. J. Biogeogr. 43, 1990-2001. [101] Zhao, T., Wang, G., Ma, Q., et al., 2020. Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus(Betulaceae). Mol. Phylogenet. Evol. 142, 106658. |