Plant Diversity ›› 2024, Vol. 46 ›› Issue (06): 774-782.DOI: 10.1016/j.pld.2023.07.007
• Articles • Previous Articles
Kuiling Zua,b, Fusheng Chena, Yaoqi Lic, Nawal Shresthad, Xiangmin Fanga, Shahid Ahmade, Ghulam Nabif, Zhiheng Wangb
Received:
2023-02-26
Revised:
2023-07-24
Published:
2024-12-26
Contact:
Kuiling Zu,E-mail:kuiling010@163.com;Zhiheng Wang,E-mail:zhiheng.wang@pku.edu.cn
Supported by:
Kuiling Zu, Fusheng Chen, Yaoqi Li, Nawal Shrestha, Xiangmin Fang, Shahid Ahmad, Ghulam Nabi, Zhiheng Wang. Climate change impacts flowering phenology in Gongga Mountains, Southwest China[J]. Plant Diversity, 2024, 46(06): 774-782.
Add to citation manager EndNote|Ris|BibTeX
Ahmad, M., Uniyal, S.K., Batish, D.R., et al., 2021. Flower phenological events and duration pattern is influenced by temperature and elevation in Dhauladhar mountain range of Lesser Himalaya. Ecol. Indic. 129, 107902. Bertin, 2008. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126-146. Blomberg, S.P., Garland, T.J., Ives, A.R., 2003. Testing for phylogeneticsignal in comparative data: behavioral traits are more labile. Evolution 57, 717-745. Boyle, W.A., Bronstein, J.L., 2012. Phenology of tropical understory trees: patterns and correlates. Rev. Biol. Trop. 60, 1415-1430. Buntgen, U., Piermattei, A., Krusic, P.J., et al., 2022. Plants in the UK flower a month earlier under recent warming. Proc. R. Soc. B-Biol. Sci. 289, 20212456. Calinger, K.M., Queenborough, S., Curtis, P.S., 2013. Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. Ecol. Lett. 16, 1037-1044. CaraDonna, P.J., Cunningham, J.L., Iler, A.M., et al., 2018. Experimental warming in the field delays phenology and reduces body mass, fat content and survival: Implications for the persistence of a pollinator under climate change. Funct. Ecol. 32, 2345-2356. CaraDonna, P.J., Iler, A.M., Inouye, D.W., 2014. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. U. S. A. 111, 4916-4921. Chen, X., Wang, L., Inouye, D., 2017. Delayed response of spring phenology to global warming in subtropics and tropics. Agric. For. Meteorol. 234, 222-235. Cleland, E.E., Chuine, I., Menzel, A., et al., 2007. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357-365. Cortes-Flores, J., Hernandez-Esquivel, K.B., Gonzalez-Rodriguez, A., et al., 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. Am. J. Bot. 104, 39-49. Davies, T.J., Wolkovich, E.M., Kraft, N.J.B., et al., 2013. Phylogenetic conservatism in plant phenology. J. Ecol. 101, 1520-1530. Davis, C.C., Lyra, G.M., Park, D.S., et al., 2022. New directions in tropical phenology. Trends Ecol. Evol. 420, 683-693. Davis, C.C., Willis, C.G., Connolly, B., et al., 2015. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am. J. Bot. 102, 1599-1609. Dedieu, J.P., Lessard-Fontaine, A., Ravazzani, G., et al., 2014. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci. Total Environ. 493, 1267-1279. Espinosa, F., Pinedo Castro, M., 2018. On the use of herbarium specimens for morphological and anatomical research. Bot. Lett. 165, 1-7. Everingham, S.E., Blick, R.A.J., Sabot, M.E.B., et al., 2022. Southern hemisphere plants show more delays than advances in flowering phenology. J. Ecol. 111, 1-11. Fitter, A.H., Fitter, R.S., 2002. Rapid changes in flowering time in British plants. Science 296, 1689-1691. Franco-Cisterna, M., Ramos-Jiliberto, R., de Espanes, P.M., et al., 2020. Phenological shifts drive biodiversity loss in plant-pollinator networks. https://doi.org/10.1101/2020.04.03.023457. Fu, Y., Li, X., Zhou, X., et al., 2020. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 63, 1237-1247. Ge, Q., Wang, H., Rutishauser, T., et al., 2015. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265-274. Hart, R., Salick, J., Ranjitkar, S., et al., 2014. Herbarium specimens show contrasting phenological responses to Himalayan climate. Proc. Natl. Acad. Sci. U. S. A. 111, 10615-10619. Hanninen, H., Kramer, K., Tanino, K., et al., 2019. Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci. 24, 199-209. Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978. Hutchinson, M.F., 1998. Interpolation of rainfall data with thin plate smoothing splines part I: two dimensional smoothing of data with short range correlation. J. Geogr. Inf. Decis. Anal. 2, 153-167. Jabis, M.D., Winkler, D.E., Kueppers, L.M., 2020. Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology 101, e03108. Jiang, Y., Li, B., Yuan, Y., et al., 2021. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai-Tibetan plateau. Agri. For. Meteorol. 307, 108502. Kharouba, H.M., Lewthwaite, J.M.M., Guralnick, R., et al., 2018. Using insect natural history collections to study global change impacts: challenges and opportunities. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 374, 20170405. Kudo, G., 2013. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311-2320. Law, W., Salick, J., 2005. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl. Acad. Sci. U. S. A. 102, 10218-10220. Lesica, P., Kittelson, P.M., 2010. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid Environ. 74, 1013-1017. Li, Y., Zou, D., Shrestha, N., et al., 2020. Spatiotemporal variation in leaf size and shape in response to climate. J. Plant Ecol. 13, 87-96. Lu, L.M., Mao, L. F., Yang, T., et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238. Ma, Q., Hanninen, H., Berninger, F., et al., 2022. Climate warming leads to advanced fruit development period of temperate woody species but divergent changes in its length. Glob. Chang. Biol. 28, 6021-6032. Meineke, E.K., Classen, A.T., Sanders, N.J., et al., 2019. Herbarium specimens reveal increasing herbivory over the past century. J. Ecol. 107, 105-117. Menzel, A., Yuan, Y., Matiu, M., et al., 2020. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 26, 2599-2612. Miller-Rushing, A.J., Primack, R.B., Primack, D., et al., 2006. Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am. J. Bot. 93, 1667-1674. Ovaskainen, O., Skorokhodova, S., Yakovleva, M., et al., 2013. Community-level phenological response to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 13434-13439. Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42. Park, D.S., Breckheimer, I.K., Ellison, A.M., et al., 2022. Phenological displacement is uncommon among sympatric angiosperms. New Phytol. 233,1466-1478. Park, D.S., Breckheimer, I.K., Williams, A.C., et al., 2018. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Phil. Trans. R. Soc. B 374, 20170394. Pelayo, R.C., Llambi, L.D., Gamez, L.E., et al., 2021. Plant phenology dynamics and pollination networks in summits of the high Tropical Andes: A baseline for monitoring climate change impacts. Front. Ecol. Evol. 9, 679045. Peng, S., Zhang, J., Zhang, X., et al., 2021. Conservation of woody species in China under future climate and land-cover changes. J. Appl. Ecol. 59, 141-152. Piao, S., Liu, Q., Chen, A., et al., 2019. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 25, 1922-1940. Pyke, G.H., Thomson, J.D., Inouye, D.W., et al., 2016. Effects of climate change on phenologies and distributions of bumble bees and the plants Ecosphere, 7, e01267. R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rafferty, N.E., Diez, J.M., Bertelsen, C.D., 2020. Changing climate drives divergent and nonlinear shifts in flowering phenology across elevations. Curr. Biol. 30, 432-441. Rafferty, N.E., Nabity, P.D., Satake, A., 2017. A global test for phylogenetic signal in shifts in flowering time under climate change. J. Ecol. 105, 627-633. Song, Z., Du, Y., Primack, R.B., et al., 2021. Surprising roles of climate in regulating flowering phenology in a subtropical ecosystem. Ecography 44, 1379-1390. Tadeo, H.R., Isaac, W.P., Susan, J.M., 2022. Herbarium specimens provide reliable estimates of phenological responses to climate at unparalleled taxonomic and spatiotemporal scales. Ecography 10, e06173. Templ, B., Templ, M., Filzmoser, P., et al., 2017. Phenological patterns of flowering across biogeographical regions of Europe. Int. J Biometeorol. 61, 1347-1358. Thackeray, S.J., Henrys, P.A., Hemming, D., et al., 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241-245. Toleno, D.M., Durbin, M.L., Lundy, K.E., et al., 2010. Extensive evolutionary rate variation in floral color determining genes in the genus Ipomoea. Plant Spec. Biol. 25, 30-42. Vitasse, Y., Ursenbacher, S., Klein, G., et al., 2021. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816-1835. Wang, Y., Yang, X.D., Ali, A., et al., 2020. Flowering phenology shifts in response to functional traits, growth form, and phylogeny of woody species in a desert area. Front. Plant Sci. 11, 536. Willis, C.G., Ruhfel, B., Primack, R.B., et al., 2008. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 17029-17033. Wu, Y., Colwell, R.K., Rahbek, C., et al., 2013. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan mountains. J. Biogeogr. 40, 2310-2323. Zu, K.L., Luo, A., Shrestha, N., et al., 2019. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai-Tibetan Plateau. Ecol. Evol. 9, 9586-9596. Zu, K.L., Wang, Z.H., Zhu, X.Y., et al., 2021. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci. Total Environ. 783, 146896. Zu, K.L., Wang, Z.H., Lenoir, J., et al., 2022. Different range shifts and determinations of elevational redistributions of native and non-native plant species in Jinfo Mountain of subtropical China. Ecol. Indic. 145, 109678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||