AbdelGhany, S.E., Pilon, M., 2008. MicroRNAmediated systemic down
regulation of copper protein expression in response to low copper availability in Arabidopsis. J. Biol. Chem. 283, 15932-15945.
BlakeKalff, M.M., Harrison, K.R., Hawkesford, M.J. et al., 1998. Distribution of sulfur within oil seed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 118, 1337-1344.
Bohrer, A.S., Yoshimoto, N., Sekiguchi, A., et al., 2015. Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front. Plant Sci. 5, 750. doi: 10.3389/fpls.2014.00750.
Chiou, T.J., Aung, K., Lin, S.I., et al., 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell. 18, 412-421.
Hawkesford, M.J., DeKok, L.J., 2006. Managing sulfur metabolism in plants. Plant Cell Environ. 29, 382-395.
Hatzfeld, Y., Cathala, N., Grignon, C., et al., 1998. Effect of ATP sulfurylase overexpression in Bright Yellow 2 tobacco cells regulation of ATP sulfurylase and SO42- transport activities. Plant Physiol. 116, 1307-1313.
Hatzfeld, Y., Lee, S., Lee, M., et al., 2000. Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene. 248, 51-58.
Jez, J., 2008. Sulfur: A Missing Link between Soils, Crops, and Nutrition. Agronomy Monography. American Society of Agronomy.
JonesRhoades, M.W., Bartel, D.P., 2004. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol. Cell. 14, 787-799.
Kaiser, G., Martinoia, E., Schroppelmeier, G., et al., 1989. Activetransport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J. Plant Physiol. 133, 756-763.
Kataoka, T., WatanabeTakahashi, A., Hayashi, N., et al., 2004. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell. 16, 2693-2704.
Kawashima, C.G., Yoshimoto, N., MaruyamaNakashita, A., et al., 2009. Sulphur starvation induces the expression of microRNA395 and one of its target genes but in different cell types. Plant J. 57, 313-321.
Kawashima, C.G., Matthewman, C.A., Huang, S., et al., 2011. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J. 66, 863-876.
Klonus, D., Hfgen, R., Willmitzer, L., et al., 1994. Isolation and characterization of two cDNA clones encoding ATP sulfurylases from potato by complementation of a yeast mutant. Plant J. 6, 105-112.
Kopriva, S., 2006. Regulation of sulfate assimilation in Arabidopsis and beyond. Ann. Bot. 97, 479-495.
Koprivova, A., Giovannetti, M., Baraniecka, P., et al., 2013. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. Plant Physiol. 163, 1133-1141.
Lappartient, A.G., Vidmar, J.J., Leustek, T., et al., 1999. Interorgan signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloemtranslocated compound. Plant J. 18, 89-95.
Leustek, T., Murillo, M., Cervantes, M., 1994. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccaromyces cerevisiae. Plant Physiol. 105, 897-902.
Leustek, T., Martin, M.N., Bick, J.A., et al., 2000. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 141-165.
Liang, G., Yang, F.X., Yu, D.Q., 2010. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62, 1046-1057.
Liang, G., He, H., Yu, D., 2012. Identification of nitrogen starvationresponsive microRNAs in Arabidopsis thaliana. PLoS ONE. 7(11), e48951.
Loudet, O., SalibaColombani, V., Camilleri, C., et al., 2007. Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat. Genet. 39, 896-900.
Lu, S., Sun, Y.H., Shi, R., et al., 2005. Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell. 17, 1378-1386.
Lunn, J., Droux, M., Martin, J., et al., 1990. Localization of ATP sulfurylase and Oacetylserine (thiol) lyase in spinach leaves. Plant Physiol. 94, 1345-1352.
Martin, M.N., Tarczynski, M.C., Shen, B., et al., 2005. The role of 5′adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth. Res. 86, 309-323.
Martinoia, E., Massonneau, A., Frangne, N., 2000. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175-1186.
MaruyamaNakashita, A., Nakamura, Y., Tohge, T., et al., 2006. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell. 18, 3235-3251.
Matthewman, C.A., Kawashima, C.G., Huska, D., et al., 2012. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett. 586, 3242-3248.
McGrath, S.P., Zhao, F.J., Withers, P.J.A., 1996. Development of sulphur deficiency in crops and its treatment. Proceedings of the International Fertiliser Society. International Fertiliser Society.
PilonSmits, E.A.H., Hwang, S.B., Lytle, C.M., et al., 1999. Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123-132.
Renosto, F., Patel, H., Martin, H., et al., 1993. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf. Arch. Biochem. Biophys. 307, 272-285.
Rotte, C., Leustek, T., 2000. Differential subcellular localization and expression of ATP sulfurylase and 5′adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol. 124, 715-724.
Tababai, M.A., Bremner, J.M., 1970. A simple turbidimetric method of determining total sulfur in plant material. Agron. J. 62, 805-806.
Takahashi, H., 2010. Regulation of sulfate transport and assimilation in plants. Int. Rev. Cell Mol. Biol. 281, 129-159.
Tsakraklides, G., Martin, M., Chalam, R., et al., 2002. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5′adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J. 32, 879-389.
Voinnet, O., 2009. Origin, biogenesis, and activity of plant microRNAs. Cell. 136, 669-687.
Yan, J., Gu, Y., Jia, X., et al., 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell. 24, 415-427. |