Plant Diversity ›› 2021, Vol. 43 ›› Issue (03): 248-254.DOI: 10.1016/j.pld.2020.08.001
• Articles • Previous Articles
Xing Huanga,b, Weiqi Lia, Xudong Zhanga
Received:
2020-06-25
Revised:
2020-08-03
Published:
2021-06-28
Contact:
Weiqi Li, Xudong Zhang
Supported by:
Xing Huang, Weiqi Li, Xudong Zhang. Flavonoid scutellarin positively regulates root length through NUTCRACKER[J]. Plant Diversity, 2021, 43(03): 248-254.
Add to citation manager EndNote|Ris|BibTeX
Ahmed, M., Chaudhari, K., Babaei-Jadidi, R., et al., 2017. Concise review:emerging drugs targeting epithelial cancer stem-like cells. Stem Cell 35, 839-850. Buer, C.S., Imin, N., Djordjevic, M.A., 2010. Flavonoids:new roles for old molecules.J. Integr. Plant Biol. 52, 98-111. Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., et al., 2003. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr. Biol. 13, 1435-1441. Chanda, B., Ditadi, A., Iscove, N.N., Keller, G., 2013. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215-227. Cruz-Ramirez, A., Diaz-Trivino, S., Blilou, I., et al., 2012. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002-1015. Cruz-Ramirez, A., Diaz-Trivino, S., Wachsman, G., et al., 2013. A SCARECROWRETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLoS Biol. 11, e1001724. Cui, H., Levesque, M.P., Vernoux, T., et al., 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421-425. Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., et al., 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423-433. Fernandez-Marcos, M., Sanz, L., Lewis, D.R., et al., 2011. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1(PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. U.S.A. 108, 18506-18511. Helariutta, Y., Fukaki, H., Wysocka-Diller, J., et al., 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555-567. Hou, P., Li, Y., Zhang, X., et al., 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654. Jacobs, M., Rubery, P.H., 1988. Naturally occurring auxin transport regulators. Science 241, 346-349. Kinoshita, A., Ten Hove, C.A., Tabata, R., et al., 2015. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem.Development 142, 444-453. Laffont, C., Blanchet, S., Lapierre, C., et al., 2010. The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. Plant Physiol. 153, 1597-1607. Levesque, M.P., Vernoux, T., Busch, W., et al., 2006. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol. 4, e143. Lewis, D.R., Olex, A.L., Lundy, S.R., et al., 2013. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 25, 3329-3346. Menke, F.L., Scheres, B., 2009. Plant asymmetric cell division, vive la difference! Cell 137, 1189-1192. Moreno-Risueno, M.A., Sozzani, R., Yardimci, G.G., et al., 2015. Transcriptional control of tissue formation throughout root development. Science 350, 426-430. Peer, W.A., Blakeslee, J.J., Yang, H., Murphy, A.S., 2011. Seven things we think we know about auxin transport. Mol. Plant 4, 487-504. Peer, W.A., Murphy, A.S., 2007. Flavonoids and auxin transport:modulators or regulators? Trends Plant Sci. 12, 556-563. Petricka, J.J., Van Norman, J.M., Benfey, P.N., 2009. Symmetry breaking in plants:molecular mechanisms regulating asymmetric cell divisions in Arabidopsis.Cold Spring Harb. Perspect Biol. 1, a000497. Sabatini, S., Heidstra, R., Wildwater, M., et al., 2003. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17, 354-358. Sozzani, R., Cui, H., Moreno-Risueno, M.A., et al., 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128-132. Toda, T., Koyama, H., Hara, T., 1999. A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Biosc.Biotech. Biochem. 63, 210-212. Ubeda-Tomas, S., Beemster, G.T.S., Bennett, M.J., 2012. Hormonal regulation of root growth:integrating local activities into global behaviour. Trends Plant Sci. 17, 326-331. Wu, S., Lee, C.M., Hayashi, T., et al., 2014. A plausible mechanism, based upon ShortRoot movement, for regulating the number of cortex cell layers in roots. Proc.Natl. Acad. Sci. U.S.A. 111, 16184-16189. Yin, R., Han, K., Heller, W., et al., 2014. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 201, 466-475. Yuan, J.S., Reed, A., Chen, F., Stewart Jr., C.N., 2006. Statistical analysis of real-time PCR data. BMC Bioinf. 7, 85. |
[1] | Xien Wu, Dengli Luo, Yingmin Zhang, Ling Jin, M. James C. Crabbe, Qin Qiao, Guodong Li, Ticao Zhang. Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis) [J]. Plant Diversity, 2023, 45(05): 590-600. |
[2] | KONG Xiang-He, WEI Shuo-Nan. The Anatomical Structure and Histological Localizations of Effective Components in Scutellaria amoena (Lamiaceae) [J]. Plant Diversity, 2011, 33(4): 414-422. |
[3] | SU WenHua, ZHANG GuangFei, ZHOU Hong, GUO XiaoRong, ZHANG Lei,. Effects of Nitrogen on the Growth and Accumulation of Secondary Metabolites of Erigeron breviscapus (Compositae) [J]. Plant Diversity, 2010, 32(01): 41-46. |
[4] | YANG Ying, ZHENG Hui , HE Feng, JI Jia-Xing, YU Long-Jiang. The Effects of Methyl Jasmonate on the Flavonoids Synthesis in Cell Suspension Culture of Glycyrrhiza inflata (Leguminosae) [J]. Plant Diversity, 2008, 30(05): 586-592. |
[5] |
LAI Guo-Fang , , ZHAO Pei-Ji , NI Zhi-Wei , XU Yun-Long , WANG Mei , LUO Shi-De , WANG Yi-Fen. A New Fructofuranoside from Helwingia chinensis (Cornaceae) [J]. Plant Diversity, 2008, 30(01): 115-120. |
[6] | YANG Ying, HE Feng , YU Long-Jiang, CHEN Xue-Hong, LEI Jing, JI Jia-Xing, FU Chun-Hua. Production of Flavonoids in Cell Suspension Culture of Glycyrrhiza inflata (Leguminosae) [J]. Plant Diversity, 2007, 29(04): 444-446. |
[7] | LU Xiao-Li , , QIAO Ying , ZHANG Xian-Min , MA Bo-Lin , QIU Ming-Hua *. Chemical Constituents from Ceratophyllum demersum (Ceratophyllaceae) [J]. Plant Diversity, 2007, 29(02): 263-264. |
[8] | ZUO Guo-Ying , , ZHANG Zhi-Jun , CHEN Li-Rong , XU Xiao-Jie. Chemical Constituents of Tibetan Herbal Medicine Saxifraga melanocentra [J]. Plant Diversity, 2005, 27(06): 691-694. |
[9] | WANG Qiong,SU ZhiXian. Changes of Total Flavonoids Content at the Module and Ramet Levels in Neosinocalamus affinis [J]. Plant Diversity, 2004, 26(01): 1-3. |
[10] | ZHAO Ai-Hua ZHAO Qin-Shi PENG Li-Yan ZHANG Ji-Xia LIN Zhong-Wen SUN Han-Dong. A New Chalcone Glycoside from Bidens pilosa [J]. Plant Diversity, 2003, 25(05): 1-3. |
[11] | ZHAO Ai-Hua, PENG Li-Yan , WANG Zong-Yu , SUN Han-Dong. An lonone Derivative from Isodon leucophyllus [J]. Plant Diversity, 2003, 25(04): 1-3. |
[12] | NA ZhI, XIANG Wei, LI Chao-Ming, LIN Zhong-Wen, SUN Han-Dong. Flavonoids from Isodon enanderianus [J]. Plant Diversity, 2002, 24(01): 1-3. |
[13] | ZHANGShi-Bao HU Hong LI Shu - Yun. Advance in Flower Genetic Engineering I : Flower Color [J]. Plant Diversity, 2001, 23(04): 1-3. |
[14] | LU Dong - Ping ZHAO De - Xiu HUANG Yan ZHAO Qiao. The Effect of Precursor Feeding on Flavonoids Biosynthesis in Cell Suspension Cultures of Saussurea medusa [J]. Plant Diversity, 2001, 23(04): 1-3. |
[15] | NA Zhi LI Chao-Ming ZHENG Hui-Lan SUN Han-Dong. The Chemical Constituents from Tetracera asiatica [J]. Plant Diversity, 2001, 23(03): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||