Banerjee, A.K., Chatterjee, M., Yu, Y.Y., et al., 2006. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457.https://doi.org/10.1105/tpc.106.042473. Birschwilks, M., Haupt, S., Hofius, D., et al., 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 57, 911-921. https://doi.org/10.1093/jxb/erj076. Blackman, R., Eastop, V., 2000. Aphids on the World's Crops. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170. Calderwood, A., Kopriva, S., Morris, R.J., 2016. Transcript abundance explains mRNA mobility data in Arabidopsis thaliana. Plant Cell 28, 610-615. https://doi.org/10.1105/tpc.15.00956. Chen, Y., Singh, A., Kaithakottil, G.G., et al., 2020. An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc. Natl. Acad. Sci. U.S.A. 117, 12763-12771. https://doi.org/10.1073/pnas.1918410117. Chitwood, D.H., Timmermans, M.C.P., 2010. Small RNAs are on the move. Nature 467, 415-419. https://doi.org/10.1038/nature09351. Clarke, C.R., Timko, M.P., Yoder, J.I., et al., 2019. Molecular dialog between parasitic plants and their hosts. Annu. Rev. Phytopathol. 57, 279-299. https://doi.org/10.1146/annurev-phyto-082718-100043. Erb, M., Meldau, S., Howe, G.A., 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17 (5), 250-259. https://doi.org/10.1016/j.tplants. 2012.01.003. Ghate, T.H., Sharma, P., Kondhare, K.R., et al., 2017. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. Plant Mol. Biol. 93 (6), 563-578.https://doi.org/10.1007/s11103-016-0582-4. Hales, D.F., Tomiuk, J., Wohrmann, K., et al., 1997. Evolutionary and genetic aspects of aphid biology:a review. Eur. J. Entomol. 94 (1), 1-55. Hannapel, D.J., Banerjee, A.K., 2017. Multiple mobile mRNA signals regulate tuber development in potato. Plants-Basel 6 (8), 1-17. https://doi.org/10.3390/plants6010008. Haywood, V., Yu, T.S., Huang, N.C., et al., 2005. Phloem long-distance trafficking of Gibberellic acid-insensitive RNA regulates leaf development. Plant J. 42 (1), 49-68. https://doi.org/10.1111/j.1365-313X.2005.02351.x. Hettenhausen, C., Li, J., Zhuang, H.F., et al., 2017. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc. Natl.Acad. Sci. U.S.A. 114 (32), E6703eE6709. https://doi.org/10.1073/pnas.1704536114. Hoagland, D.R., Arnon, D.I., 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. St. 347 (5406), 1-32. Huang, N.C., Jane, W.N., Chen, J., et al., 2012. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis.Plant J. 72 (2), 175-184. https://doi.org/10.1111/j.1365-313X.2012.05076.x. Irving, L.J., Cameron, D.D., 2009. You are what you eat:interactions between root parasitic plants and their hosts. Adv. Bot. Res. 50, 87-138. https://doi.org/10.1016/S0065-2296(08)00803-3. Jung, J.H., Park, C.M., 2007. Vascular development in plants:specification of xylem and phloem tissues. J. Plant Biol. 50 (3), 301-305. https://doi.org/10.1007/Bf03030658. Kehr, J., Buhtz, A., 2008. Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59 (1), 85-92. https://doi.org/10.1093/jxb/erm176. Kehr, J., Kragler, F., 2018. Long distance RNA movement. New Phytol. 218 (1), 29-40.https://doi.org/10.1111/nph.15025. Kim, D., Landmead, B., Salzberg, S.L., 2015. HISAT:a fast spliced aligner with low memory requirements. Nat. Methods 12 (4), 357-360. https://doi.org/10.1038/Nmeth.3317. Kim, G., LeBlanc, M.L., Wafula, E.K., et al., 2014. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345 (6198), 808-811. https://doi.org/10.1126/science.1253122. Kim,G.,Westwood,J.H.,2015.MacromoleculeexchangeinCuscuta-hostplantinteractions.Curr. Opin. Plant Biol. 26, 20-25. https://doi.org/10.1016/j.pbi.2015.05.012. Kim, M., Canio, W., Kessler, S., et al., 2001. Developmental changes due to longdistance movement of a homeobox fusion transcript in tomato. Science 293(5528), 287-289. https://doi.org/10.1126/science.1059805. Li, J., Hettenhausen, C., Sun, G.L., et al., 2015. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination. PLoS One 10 (8), 1-12. https://doi.org/10.1371/journal.pone.0135197. Li, Q., Li, H., Huang, W., et al., 2019. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8 (6), 1-10. https://doi.org/10.1093/gigascience/giz072. Li, S., Zhang, J., Liu, H., et al., 2020. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. J. Exp. Bot. 71 (3), 1171-1184. https://doi.org/10.1093/jxb/erz481. Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts:an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656. Lin, M.K., Lee, Y.J., Lough, T.J., et al., 2009. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteomics 8(2), 343-356. https://doi.org/10.1074/mcp.M800420-MCP200. Liu, N., Shen, G., Xu, Y., et al., 2020. Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol. Plant 13 (4), 573-585. https://doi.org/10.1016/j.molp.2019.12.002. Louis, J., Shah, J., 2013. Arabidopsis thaliana-Myzus persicae interaction:shaping the understanding of plant defense against phloem-feeding aphids. Front. Plant Sci. 4, 213. https://doi.org/10.3389/fpls.2013.00213. Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550. https://doi.org/10.1186/s13059-014-0550-8. Maza, E., Frasse, P., Senin, P., et al., 2013. Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments:a matter of relative size of studied transcriptomes. Commun. Integr. Biol. 6 (6), e25849.https://doi.org/10.4161/cib.25849. Notaguchi, M., 2015. Identification of phloem-mobile mRNA. J. Plant Res. 128 (1), 27-35. https://doi.org/10.1007/s10265-014-0675-6. Qin, Y., Zhang, J., Hettenhausen, C., et al., 2019. The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder. BMC Plant Biol. 19 (1), 540. https://doi.org/10.1186/s12870-019-2161-8. Ruiz-Medrano, R., Xoconostle-Cazares, B., Lucas, W.J., 1999. Phloem long-distance transport of CmNACP mRNA:implications for supracellular regulation in plants. Development 126 (20), 4405-4419. https://doi.org/10.1007/s004290050293. Shahid, S., Kim, G., Johnson, N.R., et al., 2018. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553 (7686), 82-85.https://doi.org/10.1038/nature25027. Shen, G., Liu, N., Zhang, J., et al., 2020. Cuscuta australis (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proc. Natl. Acad. Sci. U.S.A. 117 (37), 23125-23130. https://doi.org/10.1073/pnas.2009445117. Smith, C.M., Boyko, E.V., 2007. The molecular bases of plant resistance and defense responses to aphid feeding:current status. Entomol. Exp. Appl. 122 (1), 1-16.https://doi.org/10.1111/j.1570-7458.2006.00503.x. Sun, G., Xu, Y., Liu, H., et al., 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. 9 (1), 2683. https://doi.org/10.1038/s41467-018-04721-8. Tang, Q., Xiang, M., Hu, H., et al., 2015. Evaluation of sublethal effects of sulfoxaflor on the green peach aphid (Hemiptera:Aphididae) using life table parameters. J. Econ. Entomol. 108 (6), 2720-2728. https://doi.org/10.1093/jee/tov221. Thieme, C.J., Rojas-Triana, M., Stecyk, E., et al., 2015. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1 (4), 15025. https://doi.org/10.1038/Nplants.2015.25. Van Verk, M.C., Hickman, R., Pieterse, C.M., et al., 2013. RNA-Seq:revelation of the messengers. Trends Plant Sci. 18 (4), 175-179. https://doi.org/10.1016/j.tplants.2013.02.001. Westwood, J.H., Kim, G., 2017. RNA mobility in parasitic plant-host interactions. RNA Biol. 14 (4), 450-455. https://doi.org/10.1080/15476286.2017.1291482. Westwood, J.H., Yoder, J.I., Timko, M.P., et al., 2010. The evolution of parasitism in plants. Trends Plant Sci. 15 (4), 227-235. https://doi.org/10.1016/j.tplants.2010.01.004. Wu, J.Q., Baldwin, I.T., 2010. New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 44, 1-24. https://doi.org/10.1146/annurevgenet-102209-163500. Yoshida, S., Cui, S., Ichihashi, Y., et al., 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67, 643-667. https://doi.org/10.1146/annurev-arplant-043015-111702. Zhang, J., Xu, Y., Xie, J., et al., 2021. Parasite Cuscuta campestris enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiol. 185(4), 1395-1410. https://doi.org/10.1093/plphys/kiaa004. Zhuang, H., Li, J., Song, J., et al., 2018. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol. 218 (4), 1586-1596. https://doi.org/10.1111/nph.15083. |