[1] Blomberg, S.P., Garland Jr, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data, behavioral traits are more labile. Evolution 57, 717-745. [2] Brown, J.H., Gillooly, J.F., Allen, A.P., et al., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771-1789. [3] Butler, Marguerite A., King, Aaron A., 2004. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164, 683-695. [4] Cavender-Bares, J., Ackerly, D.D., Baum, D.A., et al., 2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823-843. [5] Chave, J., Andalo, C., Brown, S., et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. [6] Chazdon, R.L., Careaga, S., Webb, C., et al., 2003. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecol. Monogr. 73, 331-348. [7] Damuth, J., 2001. Scaling of growth: Plants and animals are not so different. Proc. Natl. Acad. Sci. U.S.A. 98, 2113-2114. [8] de Aguiar-Campos, N., Coelho de Souza, F., Maia, V.A., et al., 2021. Evolutionary constraints on tree size and above-ground biomass in tropical dry forests. J. Ecol.109, 1690-1702. [9] Desdevises, Y., Morand, S., Legendre, P., 2002. Evolution and determinants of host specificity in the genus Lamellodiscus (Monogenea). Biol. J. Linn. Soci. 77, 431-443. [10] Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1-15. [11] Gilbert, G.S., Webb, C.O., 2007. Phylogenetic signal in plant pathogen-host range. Proc. Natl. Acad. Sci. U.S.A. 104, 4979-4983. [12] Helmus, M.R., Savage, K., Diebel, M.W., et al., 2007. Separating the determinants of phylogenetic community structure. Ecol. Lett. 10, 917-925. [13] Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299-314. [14] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [15] Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. [16] Kimmins, J.P. (2004) Forest Ecology, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey. [17] Losos, J.B., 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995-1003. [18] Ma, H., Mo, L., Crowther, T.W., et al., 2021. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110-1122. [19] Maynard, D.S., Bialic-Murphy, L., Zohner, C.M., et al., 2022. Global relationships in tree functional traits. Nat. Commu. 13, 1-12. [20] McCullough, E.L., O’Brien, D.M., 2022. Variation in allometry along the weapon-signal continuum. Evol. Ecol. 36, 591-604. [21] Molina-Venegas, R., Rodriguez, M.A., 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53. [22] Munkemuller, T., Lavergne, S., Bzeznik, B., et al., 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743-756. [23] Nizamani, M.M., Harris, A.J., Cheng, X.L., et al., 2021. Positive relationships among aboveground biomass, tree species diversity, and urban greening management in tropical coastal city of Haikou. Ecol. Evol. 11, 12204-12219. [24] Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. [25] Palaoro, A.V., Garcia-Hernandez, S., Buzatto, B.A., et al., 2022. Function predicts the allometry of contest-related traits, but not sexual or male dimorphism in the amazonian tusked harvestman. Evol. Ecol. 36, 605-630. [26] Pantin, C.F.A., 1932. Problems of relative growth. Nature 129, 775-777. [27] Patrick, L.E., Stevens, R.D., 2016. Phylogenetic community structure of North American desert bats: influence of environment at multiple spatial and taxonomic scales. J. Anim. Ecol. 85, 1118-1130. [28] Prinzing, A., Durka, W., Klotz, S., et al., 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 268, 2383-2389. [29] Qian, H., Deng, T., Sun, H., 2019. Global and regional tree species diversity. J. Plant Ecol. 12, 210-215. [30] Qian, H., Zhang, J., 2014. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny. J. Syst. Evol. 52, 423-430. [31] Raamsdonk, L.M., Teusink, B., Broadhurst, D., et al., 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45-50. [32] Ricklefs, R.E., 2008. The Economy of Nature. W. H. Freeman. [33] Silvertown, J., Dodd, M., Gowing, D., et al., 2006a. Phylogeny and the hierarchical organization of plant diversity. Ecology 87, S39-S49. [34] Silvertown, J., McConway, K., Gowing, D., et al., 2006b. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 273, 39-44. [35] Tomkins, Joseph L., Kotiaho, Janne S., LeBas, Natasha R., 2005. Matters of scale: Positive allometry and the evolution of male dimorphisms. Am. Nat. 165, 389-402. [36] Vitt, L.J., Pianka, E.R., 2005. Deep history impacts present-day ecology and biodiversity. Proc. Natl. Acad.Sci. U.S.A. 102, 7877-7881. [37] Vitt, L.J., Zani, P.A., Esposito, M.C., 1999. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos 87, 286-294. [38] Webb, C.O., Gilbert, G.S., Donoghue, M.J., 2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87, S123-S131. [39] Weiblen, G.D., Webb, C.O., Novotny, V., et al., 2006. Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87, S62-S75. [40] Weigelt, P., Daniel Kissling, W., Kisel, Y., et al., 2015. Global patterns and drivers of phylogenetic structure in island floras. Sci. Rep. 5, 12213. [41] Wieder, W., 2014. Regridded Harmonized World Soil Database v1.2. ORNL Distributed Active Archive Center. [42] Wiens, John J., Graham, Catherine H., Moen, Daniel S., et al., 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: Treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579-596. [43] Zhang, J., Qian, H., 2022. U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Divers. doi.org/10.1016/j.pld.2022.09.001. |