Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 309-314.DOI: 10.1016/j.pld.2022.01.002
• Articles • Previous Articles Next Articles
Jing-Jing Caoa, Jing Chena, Qing-Pei Yanga, Yan-Mei Xiongb, Wei-Zheng Rena, De-Liang Konga
Received:
2021-10-28
Revised:
2022-01-05
Published:
2023-07-06
Contact:
De-Liang Kong,E-mail:deliangkong@henau.edu.cn
Supported by:
Jing-Jing Cao, Jing Chen, Qing-Pei Yang, Yan-Mei Xiong, Wei-Zheng Ren, De-Liang Kong. Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient[J]. Plant Diversity, 2023, 45(03): 309-314.
Add to citation manager EndNote|Ris|BibTeX
[1] Baird, A.S., Taylor, S.H., Pasquet-Kok, J. et al., 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592, 242-247. [2] Baraloto, C., Timothy Paine, C.E., Poorter, L. et al., 2010. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338-1347. [3] Blonder, B., Violle, C., Bentley, L.P. et al., 2011. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91-100. [4] Brodribb, T.J., Feild, T.S., 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175-183. [5] Clarke, V.C., Danila, F.R., von Caemmerer, S., 2021. CO2 diffusion in tobacco:a link between mesophyll conductance and leaf anatomy. Interface Focus 11, 20200040. [6] Diaz, S., Kattge, J., Cornelissen, J.H. et al., 2016. The global spectrum of plant form and function. Nature 529, 167-171. [7] Dong, N., Prentice, I.C., Harrison, S.P. et al., 2017. Biophysical homoeostasis of leaf temperature:a neglected process for vegetation and land-surface modelling. Global Ecol. Biogeogr. 26, 998-1007. [8] Eallonardo, A.S., Leopold, D.J., Fridley, J.D. et al., 2013. Salinity tolerance and the decoupling of resource axis plant traits. J. Veg. Sci. 24, 365-374. [9] Feild, T.S., Brodribb, T.J., 2013. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol. 199, 720-726. [10] Hattenschwiler, S., Joergensen, H.B., 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754-763. [11] Jensen, K.H., Berg-Soerensen, K., Bruus, H. et al., 2016. Sap flow and sugar transport in plants. Rev. Mod. Phys. 88. [12] Kong, D., Fridley, J.D., 2019. Does plant biomass partitioning reflect energetic investments in carbon and nutrient foraging? Funct. Ecol. 33, 1627-1637. [13] Kong, D., Ma, C., Zhang, Q. et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872. [14] Li, L., McCormack, M.L., Ma, C. et al., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 18, 899-906. [15] Li, Y., 2006. Studies on Leaf Anatomy of Some Mangrove Species. XMU. [16] Liang, X., Liu, S., Wang, T. et al., 2021. Metabolomics-driven gene mining and genetic improvement of tolerance to salt-induced osmotic stress in maize. New Phytol. 230, 2355-2370. [17] Litton, C.M., Raich, J.W., Ryan, M.G., 2007. Carbon allocation in forest ecosystems. Global Change Biol. 13, 2089-2109. [18] Long, Y., Kong, D., Chen, Z. et al., 2013. Variation of the linkage of root function with root branch order. PLoS One 8, e57153. [19] Lynch, D.J., Matamala, R., Iversen, C.M. et al., 2013. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytol. 199, 420-430. [20] Mueller, K.E., Diefendorf, A.F., Freeman, K.H. et al., 2010. Appraising the roles of nutrient availability, global change, and functional traits during the angiosperm rise to dominance. Ecol. Lett. 13, E1-E6. [21] Oliveira, R.S., Eller, C.B., Barros, F.V. et al., 2021. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904-923. [22] Petraglia, A., Cacciatori, C., Chelli, S. et al., 2018. Litter decomposition:effects of temperature driven by soil moisture and vegetation type. Plant Soil 435, 187-200. [23] Reich, P.B., 2014. The world-wide 'fast-slow' plant economics spectrum:a traits manifesto. J. Ecol. 102, 275-301. [24] Sack, L., Frole, K., 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. J. Ecol. 87, 483-491. [25] Sack, L., Scoffoni, C., 2013. Leaf venation:structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983-1000. [26] Sack, L., Scoffoni, C., John, G.P. et al., 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J. Exp. Bot. 64, 4053-4080. [27] Sack, L., Scoffoni, C., McKown, A.D. et al., 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3, 837. [28] Scoffoni, C., Rawls, M., McKown, A. et al., 2011. Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture. Plant Physiol. 156, 832-843. [29] Stuart Chapin III, F., Matson, P.A., Vitousek, P.M., 2011. in:Stuart Chapin III, F., Matson, P.A., Vitousek, P.M. (Eds), Principles of terrestrial Ec cosystem ecology, second ed. Water and Energy Balance. Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA. pp. 93-122 [30] Swamy, G.S., 1998. How do plants absorb nutrients from the soil? Resonance 3, 45-52. [31] Taiz, L., Zeiger, E., 2010. Plant Physiology, fifth ed. in:Taiz, L., Zeiger, E. (Eds), Sinauer Associates, Massachusetts U.S.A. pp. 161-198. [32] Terrer, C., Phillips, R.P., Hungate, B.A. et al., 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599-603. [33] Umana, M.N., Swenson, N.G., Marchand, P. et al., 2021. Relating leaf traits to seedling performance in a tropical forest:building a hierarchical functional framework. Ecology 102, e03385. [34] Valverde-Barrantes, O.J., Maherali, H., Baraloto, C. et al., 2020. Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytol. 228, 541-553. [35] Wang, D., He, N., Wang, Q. et al., 2016. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere 26, 399-407. [36] Wang, R., Penuelas, J., Li, T. et al., 2021. Natural abundance of (13) C and (15) N provides evidence for plant-soil carbon and nitrogen dynamics in a N-fertilized meadow. J. Ecol. 102, e03348. [37] Woodroffe, C., 1992. Mangrove sediments and geomorphology, in:Robertson, A.I., Alongi, D.M., (eds.), Tropical Mangrove Ecosystems. American Geophysical Union, pp. 7-41. [38] Wright, I.J., Dong, N., Maire, V. et al., 2017. Global climatic drivers of leaf size. Science 357, 917-921. [39] Wright, I.J., Reich, P.B., Westoby, M. et al., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. [40] Xiong, Y., Liao, B., Proffitt, E. et al., 2018. Soil carbon storage in mangroves is primarily controlled by soil properties:a study at Dongzhai Bay, China. Sci. Total Environ. 619-620, 1226-1235. [41] Xiong, Y., Liu, X., Guan, W., Liao, B. et al., 2016. Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant Soil 413, 83-95. [42] Zhang, J.-L., Cao, K.-F., 2009. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Funct. Ecol. 23, 658-667. [43] Zhou, M., Bai, W., Li, Q., Guo, Y. et al., 2021. Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytol. 229, 1481-1491. |
[1] | Shuang Tie, Yong-Deng He, Amparo Lázaro, David W. Inouye, You-Hao Guo, Chun-Feng Yang. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing [J]. Plant Diversity, 2023, 45(03): 315-325. |
[2] | Lubing Liu, Jie Yang, Min Cao, Qinghai Song. Intraspecific trait variation of woody species reduced in a savanna community, southwest China [J]. Plant Diversity, 2022, 44(02): 163-169. |
[3] | Meng-Jiao Fu, Hai-Yang Wu, Dong-Rui Jia, Bin Tian. Evolutionary history of a desert perennial Arnebia szechenyi (Boraginaceae): Intraspecific divergence, regional expansion and asymmetric gene flow [J]. Plant Diversity, 2021, 43(06): 462-471. |
[4] | EiEi Shwe, Bo Wu, Shuang-Quan Huang. Both small and large plants are likely to produce staminate (male) flowers in a hermaphrodite lily [J]. Plant Diversity, 2020, 42(03): 142-147. |
[5] | Wumei Xu, Kyle W. Tomlinson, Jie Li. Strong intraspecific trait variation in a tropical dominant tree species along an elevational gradient [J]. Plant Diversity, 2020, 42(01): 1-6. |
[6] | Zhi-Li Zhou, Yuan-Wen Duan, Yan Luo, Yong-Ping Yang, Zhi-Qiang Zhang. Cell number explains the intraspecific spur-length variation in an Aquilegia species [J]. Plant Diversity, 2019, 41(05): 307-314. |
[7] | Yahuang Luo, Jie Liu, Shaolin Tan, Marc W. Cadotte, Kun Xu, Lianming Gao, Dezhu Li. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China [J]. Plant Diversity, 2016, 38(06): 303-311. |
[8] | DU Qin, HUI Wen-Meng, MI Dong-Qing. Ethnobotany of Mangroves among Jing People’s Folks [J]. Plant Diversity, 2015, 37(05): 647-654. |
[9] | HOU Xue-Liang. Textual Research on Chinese Mangrove Bruguiera cylindrica (Rhizophoraceae) [J]. Plant Diversity, 2015, 37(03): 267-270. |
[10] | GONG Qiang-Bang, LI Zhi-Min, PENG De-Li, NIU Yiang, SUN Hang, ZHANG Zhi-Qiang. Male Flowers and Relationship between Plant Size and Sex Expression in Herbaria of Nomocharis Species (Liliaceae) [J]. Plant Diversity, 2015, 37(01): 11-20. |
[11] | WANG Dong-Chao-, WU Jie-, YANG Yong-Hong-, CHEN Jia-Hui-, YANG Yong-Ping. Intraspecific Variation of Leaf Epidermal Cuticle Waxes under Scanning Electronic Microscope:Stipa purpurea and Oxytropis microphylla from the QinghaiTibet Plateau [J]. Plant Diversity, 2013, 35(3): 348-354. |
[12] | HUANG Yong-Jiang-, ZHU Hai-, CHEN Wen-Yun-, ZHOU Zhe-Kun. Intraspecific Variation in Samara Morphology of Acer and Its Implication in Fossil Identification [J]. Plant Diversity, 2013, 35(3): 295-302. |
[13] | LI You; SU Zhi-Xian; ZHANG Su-Lan; HU Jin-Yao; GUO Xiao-Ping; ZHU Li-Jun. Intraspecific and Interspecific Competition in Davidia involucrata (Davidiaceae) Community [J]. Plant Diversity, 2006, 28(06): 625-630. |
[14] | RU Qiao-Mei, ZHENG Hai-Lei-**, Xiao-Qiang. Advances in Salt- Tolerance Mechanism of Mangrove [J]. Plant Diversity, 2006, 01(01): 78-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||