Plant Diversity ›› 2023, Vol. 45 ›› Issue (03): 326-336.DOI: 10.1016/j.pld.2022.10.004
• Articles • Previous Articles Next Articles
Yu-Wen Zhanga,b,c, Yu-Cen Shia,b,c, Shi-Bao Zhanga,b,d
Received:
2022-07-05
Revised:
2022-09-17
Published:
2023-07-06
Contact:
Shi-Bao Zhang,E-mail:sbzhang@mail.kib.ac.cn
Supported by:
Yu-Wen Zhang, Yu-Cen Shi, Shi-Bao Zhang. Metabolic and transcriptomic analyses elucidate a novel insight into the network for biosynthesis of carbohydrate and secondary metabolites in the stems of a medicinal orchid Dendrobium nobile[J]. Plant Diversity, 2023, 45(03): 326-336.
Add to citation manager EndNote|Ris|BibTeX
[1] Ambasht, P.K., Kayastha, A.M., 2002. Plant pyruvate kinase. Biol. Plant. 45 (1), 1-10. https://doi.org/10.1023/A:1015173724712. [2] Cai, Y.C., Li, S.F., Jiao, G.A., Sheng, Z.H., Wu, Y.W., Shao, G.N., Xie, L.H., Peng, C., Xu, J.F., Tang, S.Q., Wei, X.J., Hu, P.S., 2018. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnol. J. 16 (11), 1878-1891. https://doi.org/10.1111/pbi.12923. [3] Chen, W., Gong, L., Guo, Z.L., Wang, W.S., Zhang, H.Y., Liu, X.Q., Yu, S.B., Xiong, L.Z., Luo, J., 2013. A Novel Integrated method for large-scale detection, identification, and quantification of widely targeted metabolites:application in the study of rice metabolomics. Mol. Plant. 6 (6), 1769-1780. https://doi.org/10.1093/mp/sst080. [4] de Oliveira, M.V.V., Jin, X., Chen, X., Griffith, D., Batchu, S., Maeda, H.A., 2019. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. Plant J. 97 (5), 901-922. https://doi.org/10.1111/tpj.14169. [5] De Vos, R.C., Moco, S., Lommen, A., Keurentjes, J.J., Bino, R.J., Hall, R.D., 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2 (4), 778-791. https://doi.org/10.1038/nprot.2007.95. [6] Guo, L.H., Qi, J.X., Du, D., Liu, Y., Jiang, X., 2020. Current advances of Dendrobium officinale polysaccharides in dermatology:a literature review. Pharm Biol. 58 (1), 664-673. https://doi.org/10.1080/13880209.2020.1787470. [7] Guo, X., Li, Y., Li, C.F., Luo, H.M., Wang, L.Z., Qian, J., Luo, X., Xiang, L., Song, J.Y., Sun, C., Xu, H.B., Yao, H., Chen, S.L., 2013. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 527 (1), 131-138. https://doi.org/10.1016/j.gene.2013.05.073. [8] He, C.M., Zhang, J.X., Liu, X.C., Zeng, S.J., Wu, K.L., Yu, Z.M., Wang, X.J., da Silva, J.A.T., Lin, Z.J., Duan, J., 2015. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol. Biol. 88 (33), 219-231. https://doi.org/10.1007/s11103-015-0316-z. [9] He, L., Su, Q., Bai, L., Li, M.F., Liu, J.R., Liu, X.M., Zhang, C.Y., Jiang, Z.L., He, J., Shi, J.Y., Huang, S., Guo, L., 2020. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur. J. Med. Chem. 204, 1-17. https://doi.org/10.1016/j.ejmech.2020.112530. [10] Holman, J.D., Tabb, D.L., Mallick, P., 2014. Employing proteowizard to convert raw mass spectrometry data. Curr. Protoc. Bioinformatics 46, 1-9. https://doi.org/10.1002/0471250953.bi1324s46. [11] Jander, G., Kolukisaoglu, U., Stahl, M., Yoon, G.M., 2020. Editorial:physiological aspects of non-proteinogenic amino acids in plants. Front. Plant Sci. 11, 1-3. https://doi.org/10.3389/fpls.2020.519464. [12] Jiao, C.Y., Song, C., Zheng, S.Y., Zhu, Y.P., Jin, Q., Cai, Y.P., Lin, Y., 2018. Metabolic profiling of Dendrobium officinale in response to precursors and methyl jasmonate. Int. J. Mol. Sci. 19 (3), 728-747. https://doi.org/10.3390/ijms19030728. [13] Kang, L.Q., Zhou, J.S., Wang, R., Zhang, X.W., Liu, C.C., Liu, Z.H., Yuan, S., 2019. Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea. Appl. Environ. Microb. 85 (21), 1345-1319. https://doi.org/10.1128/aem.01345-19. [14] Liu, Y.H., Rainey, P.B., Zhang, X.X., 2015. Molecular mechanisms of xylose utilization by Pseudomonas fluorescens:overlapping genetic responses to xylose, xylulose, ribose and mannitol. Mol. Microbiol. 98 (93), 553-570. https://doi.org/10.1111/mmi.13142. [15] Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 (4), 402-408. https://doi.org/10.1006/meth.2001.1262. [16] Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550-571. https://doi.org/10.1186/s13059-014-0550-8. [17] Mou, Z.M., Zhao, Y., Ye, F., Shi, Y.N., Kennelly, E.J., Chen, S.Y., Zhao, D.K., 2021. Identification, biological activities and biosynthetic pathway of Dendrobium alkaloids. Front. Pharmacol. 12, 1-14. https://doi.org/10.3389/fphar.2021.605994. [18] Ng, T.B., Liu, J., Wong, J.H., Ye, X., Wing Sze, S.C., Tong, Y., Zhang, K.Y., 2012. Review of research on Dendrobium, a prized folk medicine. Appl. Microbiol. Biot. 93 (5), 1795-1803. https://doi.org/10.1007/s00253-011-3829-7. [19] Pan, X.H., Li, Y.T., Pan, G.T., Yang, A.G., 2019. Bioinformatics study of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) genes in Solanaceae. Mol. Biol. Rep. 46 (5), 5175-5184. https://doi.org/10.1007/s11033-019-04975-5. [20] Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33 (3), 290-295. https://doi.org/10.1038/nbt.3122. [21] Pfister, B., Zeeman, S., 2016. Formation of starch in plant cells. Cell. Mol. Life Sci. 73 (14), 2781-2807. https://doi.org/10.1007/s00018-016-2250-x. [22] Sato, K., Mase, K., Nakano, Y., Nishikubo, N., Sugita, R., Tsuboi, Y., Kajita, S., Zhou, J.M., Kitano, H., Katayama, Y., 2006. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase is regulated for the accumulation of polysaccharide-linked hydroxycinnamoyl esters in rice (Oryza sativa L.) internode cell walls. Plant Cell Rep. 25 (7), 676-688. https://doi.org/10.1007/s00299-006-0124-7. [23] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498-2504. https://doi.org/10.1101/gr.1239303. [24] Shen, C.J., Guo, H., Chen, H.L., Shi, Y.J., Meng, Y.J., Lu, J.J., Feng, S.G., Wang, H.Z., 2017. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci. Rep. 7 (1), 187-198. https://doi.org/10.1038/s41598-017-00292-8. [25] Tian, S.K., Wang, D.D., Yang, L., Zhang, Z.X., Liu, Y., 2021. A systematic review of 1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants. Plant Growth Regul. 1-15. https://doi.org/10.1007/s10725-021-00784-8. [26] Tohge, T., Watanabe, M., Hoefgen, R., Fernie, A., 2013. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 4 (62), 1-13. https://doi.org/10.3389/fpls.2013.00062. [27] Wang, Z.C., Zhao, M.L., Cui, H.Q., Li, J., Wang, M.N., 2020. Transcriptomic landscape of medicinal Dendrobium reveals genes associated with the biosynthesis of bioactive components. Front. Plant Sci. 11, 391-401. https://doi.org/10.3389/fpls.2020.00391. [28] Xu, J., Guan, J., Chen, X.J., Zhao, J., Li, S.P., 2011. Comparison of polysaccharides from different Dendrobium using saccharide mapping. J. Pharmaceut. Biomed. 55 (5), 977-983. https://doi.org/10.1016/j.jpba.2011.03.041. [29] Yu, C.M., Li, Y.W., Li, B., Liu, X., Hao, L.F., Chen, J., Qian, W.Q., Li, S.M., Wang, G.F., Bai, S.W., Ye, H., Qin, H.J., Shen, Q.H., Chen, L.B., Zhang, A., Wang, D., 2010. Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues. BMC Plant Biol. 10, 214-230. https://doi.org/10.1186/1471-2229-10-214. [30] Yu, C.M., Liu, X.Y., Zhang, Q., He, X.Y., Huai, W., Wang, B.H., Cao, Y.Y., Zhou, R., 2015. Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum. Crop J. 3 (1), 29-36. https://doi.org/10.1016/j.cj.2014.07.003. [31] Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. clusterProfiler:an R package for comparing biological themes among gene clusters. OMICS. 16 (5), 284-287. https://doi.org/10.1089/omi.2011.0118. [32] Yuan, Y.D., Yu, M.Y., Jia, Z.H., Song, X.E., Liang, Y.Q., Zhang, J.C., 2019a. Analysis of Dendrobium huoshanense transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genom. 19 (1), 978-984. https://doi.org/10.1186/s12864-018-5305-6. [33] Yuan, Y.D., Yu, M.Y., Zhang, B., Liu, X., Zhang, J.C., 2019b. Comparative nutritional characteristics of the three major Chinese Dendrobium species with different growth years. PLoS One 14 (9), e0222666. https://doi.org/10.1371/journal.pone.0222666. [34] Yuan, Y.D., Zhang, J.C., Liu, X., Meng, M.J., Wang, J.P., Lin, J., 2020. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 112 (2), 1781-1794. https://doi.org/10.1016/j.ygeno.2019.10.010. [35] Yue, H., Zeng, H., Ding, K., 2020. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin. J. Nat. Medicines 18 (1), 1-27. https://doi.org/10.1016/S1875-5364(20)30001-7. [36] Zhang, J.X., He, C.M., Wu, K.L., da Silva, J.A.T., Zeng, S.J., Zhang, X.H., Yu, Z.M., Xia, H.Q., Duan, J., 2016. Transcriptome analysis of Dendrobium officinale and its application to the identification of genes associated with polysaccharide synthesis. Front. Plant Sci. 7, 5-18. https://doi.org/10.3389/fpls.2016.00005. [37] Zheng, Y.P., Jiang, W., Silva, E.N., Mao, L.Z., Hannaway, D., Lu, H.F., 2012. Optimization of shade condition and harvest time for Dendrobium candidum plants based on leaf gas excachange, alkaloids and polysaccharides contents. Plant Omics 5 (3), 253-260. [38] Ziveri, J., Tros, F., Guerrera, I.C., Chhuon, C., Audry, M., Dupuis, M., Barel, M., Korniotis, S., Fillatreau, S., Gales, L., Cahoreau, E., Charbit, A., 2017. The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nat. Commun. 8, 853-868. https://doi.org/10.1038/s41467-017-00889-7. |
[1] | Shiming Deng, Qiang Xiao, Cigui Xu, Jian Hong, Zhijun Deng, Dan Jiang, Shijia Luo. Metabolome profiling of stratified seeds provides insight into the regulation of dormancy in Davidia involucrata [J]. Plant Diversity, 2022, 44(04): 417-427. |
[2] | Ting Tang, Faqing Tao, Weiqi Li. Characterisation of manganese toxicity tolerance in Arabis paniculata [J]. Plant Diversity, 2021, 43(02): 163-172. |
[3] | Jun-Chu Peng, Xiang-Guang Ma, Yue-Hua Wang, Hang Sun. New insights into the evolutionary history of Megacodon: Evidence from a newly discovered species [J]. Plant Diversity, 2020, 42(03): 198-208. |
[4] | Yonglu Wei, Jianpeng Jin, Xiani Yao, Chuqiao Lu, Genfa Zhu, Fengxi Yang. Transcriptome Analysis Reveals Clues into leaf-like flower mutant in Chinese orchid Cymbidium ensifolium [J]. Plant Diversity, 2020, 42(02): 92-101. |
[5] | Yun Jia, Ji-Qing Bai, Mi-Li Liu, Zhen-Fang Jiang, Yan Wu, Min-Feng Fang, Zhong-Hu Li. Transcriptome analysis of the endangered Notopterygium incisum: Cold-tolerance gene discovery and identification of EST-SSR and SNP markers [J]. Plant Diversity, 2019, 41(01): 1-6. |
[6] | Ruisen Lu, Wuqin Xu, Qixiang Lu, Pan Li, Jocelyn Losh, Faiza Hina, Enxiang Li, Yingxiong Qiu. Generation and classification of transcriptomes in two Croomia species and molecular evolution of CYC/TB1 genes in Stemonaceae [J]. Plant Diversity, 2018, 40(06): 253-264. |
[7] | Tao Liu a, Xiaoxian Li b, Shiqing Xie a, Ling Wang a, Shengchao Yang a, *. RNA-seq analysis of Paris polyphylla var. yunnanensis roots identified candidate genes for saponin synthesis [J]. Plant Diversity, 2016, 38(03): 163-170. |
[8] | ZhAO Lei, Zachary LARSONRABIN, CHEN Si-Yun, GUO Zhen-Hua. Comparing De Novo Transcriptome Assemblers Using Illumina RNASeq Reads [J]. Plant Diversity, 2012, 34(5): 487-501. |
[9] | GUO Jie-, HE Hong-Ping-, LI Shun-Lin-, HUA Hui-Ming-, HAO Xiao-Jiang. A New Alkaloid from the Roots of Stemona tuberosa (Stemonaceae) [J]. Plant Diversity, 2010, 32(05): 463-465. |
[10] |
WU Xing-De , HE Juan , XU Gang , PENG Li-Yan, SONG Liu-Dong, ZHAO Qin-Shi.
Diphaladine A, a New Lycopodium Alkaloid from Diphasiastrum complanatum (Lycopodiaceae) [J]. Plant Diversity, 2009, 31(1): 93-96. |
[11] | SHE Gai-Mei , , CHEN Ke-Ke , ZHANG Ying-Jun, YANG Chong-Ren. The Occurrence of 8-oxocaffeine and Pyrimidine Alkaloids in Pu-Er Ripe Tea [J]. Plant Diversity, 2007, 29(06): 713-716. |
[12] | FAN MeiHua,ZHOU JiYuan. Effects of Culture Conditions on Cell Growth and Total Alkaloid Formation in Suspension Cultures of Pinellia ternata [J]. Plant Diversity, 2003, 25(14): 1-3. |
[13] | DONG Jin-Yan LI Liang. A New Norditerpenoid Alkaloid from Aconitum geniculatum [J]. Plant Diversity, 2001, 23(03): 1-3. |
[14] | QIU Ming-Hua YANG Wen-Sheng NIE Rui-Lin. Steroidal Alkaloids from Buxus bodinieri [J]. Plant Diversity, 2001, 23(03): 1-3. |
[15] | HE Hong-Ping,LIU Fu-Chu,HU Lin,ZHU,Hong-You. Alkaloids fromthe Flowers of Colchium autumnale [J]. Plant Diversity, 1999, 21(03): 1-3. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||