Plant Diversity ›› 2024, Vol. 46 ›› Issue (01): 126-133.DOI: 10.1016/j.pld.2023.07.001
• Articles • Previous Articles Next Articles
Ling-Bo Huanga, Xinyi Guana, Amy Ny Aina Aritsaraa, Jun-Jie Zhua, Steven Jansenb, Kun-Fang Caoa
Received:
2023-02-15
Revised:
2023-07-01
Online:
2024-01-25
Published:
2024-03-02
Contact:
Kun-Fang Cao,E-mail:kunfangcao@gxu.edu.cn
Supported by:
Ling-Bo Huang, Xinyi Guan, Amy Ny Aina Aritsara, Jun-Jie Zhu, Steven Jansen, Kun-Fang Cao. Lipid concentration and composition in xylem sap of woody angiosperms from a tropical savanna and a seasonal rainforest[J]. Plant Diversity, 2024, 46(01): 126-133.
Add to citation manager EndNote|Ris|BibTeX
[1] Bargmann, B.O., Laxalt, A.M., ter Riet, B., et al., 2009. Reassessing the role of phospholipase D in the Arabidopsis wounding response. Plant Cell Environ 32(7): 837-850. [2] Bucci, S.J., Goldstein, G., Meinzer, F.C., et al., 2004. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24(8): 891-899. [3] Chen, Y.J., Choat, B., Sterck, F., et al., 2021. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters 24 2350-2363. [4] Dixon, H.H., Joly, J., 1985. On the ascent of sap. Philosophical Transactions of the Royal Society of London B 186(4): 563-576. [5] Esau, K., 1965. Plant anatomy, 2nd ed. John Wiley & Sons, New York. [6] Esau, K., Cheadle, V., Gill, R., 1966. Cytology of differentiating tracheary elements II. Structures associated with cell surfaces. American Journal of Botany 53(8): 765-771. [7] Gonorazky, G., Laxalt, A.M., Dekker, H., et al., 2012. Phosphatidylinositol 4-phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids. Plant Biology 14(1): 41-49. [8] Guan, X., Schenk, H.J., Roth, M.R., et al., 2022. Nanoparticles are linked to polar lipids in xylem sap of temperate angiosperm species. Tree Physiology 42(10): 2003-2019. [9] Hacke, U.G., Spicer, R., Schreiber, S.G., et al., 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment 40(6): 831-845. [10] Herrera-Ramirez, D., Sierra, C.A., Romermann, C., et al., 2021. Starch and lipid storage strategies in tropical trees relate to growth and mortality. New Phytologist 230(1): 139-154. [11] Holzl, G., Dormann, P., 2019. Chloroplast Lipids and Their Biosynthesis. Annu Rev Plant Biol 70 51-81. [12] Ingram, S., Salmon, Y., Lintunen, A., et al., 2021. Dynamic Surface Tension Enhances the Stability of Nanobubbles in Xylem Sap. Frontiers in Plant Science 12: Article 732701. [13] Jansen, S., Schenk, H.J., 2015. On the ascent of sap in the presence of bubbles. American Journal of Botany 102(10): 1561-1563. [14] Jansen, S., Schenk, H.J., 2021. Not all lipids in xylem conduits are artefacts. A reply to Yamagishi et al. IAWA journal 42(4): 384-385. [15] Jin, Y., Qian, H., 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42(8): 1353-1359. [16] Kaack, L., Weber, M., Isasa, E., Karimi, Z., Li, S., Pereira, L., Trabi, C.L., Zhang, Y., Schenk, H.J., Schuldt, B., Schmidt, V., Jansen, S., 2021. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. New Phytol 230, 1829–1843. [17] Levionnois, S., Kaack, L., Heuret, P., et al., 2022. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. Plant Physiology 190(1): 371-386. [18] Mercury, L., Azaroual, M., Zeyen, H., et al., 2003. Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochimica et Cosmochimica Acta 67(10): 1769-1785. [19] Morris, H., Gillingham, M.A.F., Plavcova, L., et al., 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment 41(1): 245-260. [20] Pereira, L., Jansen, S., Miranda, M.T., et al., 2022. Dynamic changes in gas solubility of xylem sap reiterate the enigma of plant water transport under negative pressure. bioRxiv 2022.2001.2006.475193. [21] Ratnam, J., Tomlinson, K.W., Rasquinha, D.N., et al., 2016. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos Trans R Soc Lond B Biol Sci 371(1703): 20150305. [22] R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL [23] Schenk, H.J., Espino, S., Rich-Cavazos, S.M., et al., 2018. From the sap's perspective: The nature of vessel surfaces in angiosperm xylem. Am J Bot 105(2): 172-185. [24] Schenk, H.J., Espino, S., Romo, D.M., et al., 2017. Xylem surfactants introduce a new element to the Cohesion-Tension theory. Plant Physiology 173(2): 1177-1196. [25] Schenk, H.J., Espino, S., Visser, A., et al., 2016. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry. Plant, Cell & Environment 39 944-950. [26] Schenk, H.J., Michaud, J.M., Mocko, K., et al., 2021. Lipids in xylem sap of woody plants across the angiosperm phylogeny. Plant Journal 105(6): 1477-1494. [27] Schenk, H.J., Steppe, K., Jansen, S., 2015. Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science 20(4): 199-205. [28] Schneider, H., Manz, B., Westhoff, M., et al., 2003. The impact of lipid distribution, composition and mobility on xylem water refilling of the resurrection plant Myrothamnus flabellifolia. New Phytol 159(2): 487-505. [29] Scholes, R.J., Archer, S.R., 1997. Tree-grass interactions in Savannas. Annual Review of Ecology and Systematics 28(1): 517-544. [30] Scott, F.M., Sjaholm, V., Bowler, E., 1960. Light and electron microscope studies of the primary xylem of Ricinus communis. American Journal of Botany 47(3): 162-173. [31] Shen, J.X., Zhang, Y.J., Maenpuen, P., et al., 2022. Response of four evergreen savanna shrubs to an incidence of extreme drought: high embolism resistance, branch shedding and maintenance of nonstructural carbohydrates. Tree Physiology 42(4): 740-753. [32] Sturtevant, D., Lee, Y.-J., Chapman, K.D., 2016. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Current Opinion in Biotechnology 37 53-60. [33] van Meer, G., Voelker, D.R., Feigenson, G.W., 2008. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2): 112-124. [34] Wang, Y.-Q., Song, H.-Q., Chen, Y.-J., et al., 2023. Hydraulic determinants of drought-induced tree mortality and changes in tree abundance between two tropical forests with different water availability. Agricultural and Forest Meteorology 331: 109329. [35] Wargowsky, I.K., Nesmith, J.E., Holdo, R.M., 2021. Root vascular traits differ systematically between African savanna tree and grass species, with implications for water use. American Journal of Botany 108(1): 83-90. [36] Westhoff, M., Schneider, H., Zimmermann, D., et al., 2008. The mechanisms of refilling of xylem conduits and bleeding of tall birch during spring. Plant Biology 10(5): 604-623. [37] Wheeler, T.D., Stroock, A.D., 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210): 208-212. [38] Yang, J.L., Michaud, J.M., Jansen, S., et al., 2020. Dynamic surface tension of xylem sap lipids. Tree Physiology 40(4): 433-444. [39] Yao, Y.F., Bruch, A.A., Cheng, Y.M., et al., 2012. Monsoon versus uplift in southwestern China--Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS One 7(5): e37760. [40] Zhang, S.B., Zhang, J.L., Cao, K.F., 2016. Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna. Frontiers in Plant Science 7(1): e2075. [41] Zhang, Y, Carmesin, C, Kaack, L, Klepsch, MM, Kotowska, M, Matei, T, Schenk, HJ, Weber, M, Walther, P, Schmidt, V, Jansen, S, 2020 Jan. High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant Cell Environ 43 (1), 116–130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||