[1] Angiosperm Phylogeny Group IV, Chase, M.W., Christenhusz, M.J., et al., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. [2] Bi, C., Paterson, A.H., Wang, X., et al., 2016. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches. BioMed Res. Int. 2016, 1-18. [3] Danecek, P., Bonfield, J.K., Liddle, J., et al., 2021. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008. [4] Dombrovska, O., Qiu, Y.L., 2004. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol. Phylogenet. Evol. 32, 246-263. [5] Fan, W., Guo, W., Funk, L., et al., 2019. Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis. Sci. China Life Sci. 62, 498-506. [6] Guo, C., Ma, P.-F., Yang, G.-Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [7] Hon, T., Mars, K., Young, G., et al., 2020. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci. Data 7, 399. [8] Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. [9] Knoop, V., Volkmar, U., Hecht, J., et al., 2011. Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed). Plant Mitochondria. Springer, New York, NY, pp. 3-29. [10] Kurtz, S., Phillippy, A., Delcher, A.L., et al., 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12. [11] Lai, C., Wang, J., Kan, S., et al., 2022. Comparative analysis of mitochondrial genomes of Broussonetia spp. (Moraceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. Front. Plant Sci. 13, 1052151. [12] Li, H.-T., Luo, Y., Gan, L., et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biology 19, 232. [13] Li, H.-T., Yi, T.-S., Gao, L.-M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. [14] Ma, J., Sun, P., Wang, D., et al., 2021. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat. Commun. 12, 6929. [15] Minh, B.Q., Schmidt, H.A., Chernomor, O., et al., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534. [16] Mower, J.P., 2020. Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion 53, 203-213. [17] Palmer, J.D., Herbon, L.A., 1988. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J. Mol. Evol. 28, 87-97. [18] Picardi, E., Pesole, G., 2013. REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29, 1813-1814. [19] Rice, D.W., Alverson, A.J., Richardson, A.O., et al., 2013. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342, 1468-1473. [20] Rudinger, M., Funk, H.T., Rensing, S.A., et al., 2009. RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol. Genet. Genom. 281, 473-481. [21] Sloan, D.B., 2013. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 200, 978-985. [22] Sloan, D.B., Oxelman, B., Rautenberg, A., et al., 2009. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol. Biol. 9, 12. [23] Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2012. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192. [24] Twyford, A.D., Ness, R.W., 2016. Strategies for complete plastid genome sequencing. Mol. Ecol. Resour. 17, 858-868. [25] Wang, N., Li, C.C., Kuang, L.H., et al., 2022. Pan-mitogenomics reveals the genetic basis of cytonuclear conflicts in citrus hybridization, domestication, and diversification. Proc. Natl. Acad. Sci. U.S.A. 119, e2206076119. [26] Wu, Z.Q., Liao, X.Z., Zhang, X.N., et al., 2022. Genomic architectural variation of plant mitochondria-A review of multichromosomal structuring. J. Syst. Evol. 60, 160-168. [27] Xue, J.Y., Dong, S.S., Wang, M.Q., et al., 2021. Mitochondrial genes from 18 angiosperms fill sampling gaps for phylogenomic inferences of the early diversification of flowering plants. J. Syst. Evol. 60, 773-788. [28] Yang, Z., Deng, C., Wang, L., et al., 2022a. A new species of Cinnamomum (Lauraceae) from southwestern China. PhytoKeys 202, 35-44. [29] Yang, Z., Liu, B., Yang, Y., et al., 2022b. Phylogeny and taxonomy of Cinnamomum (Lauraceae). Ecol. Evol. 12, e9378. [30] Yu, R., Chen, X., Long, L., et al., 2023. De novo assembly and comparative analyses of mitochondrial genomes in Piperales. Genome Biol. Evol. 15, evad041. [31] Zardoya, R., 2020. Recent advances in understanding mitochondrial genome diversity. F1000Research 9, F1000. [32] Zhang, C., Ma, H., Sanchez-Puerta, M.V., et al., 2020a. Horizontal gene transfer has impacted cox1 gene evolution in Cassytha filiformis. J. Mol. Evol. 88, 361-371. [33] Zhang, H., Florentine, S., Tennakoon, K.U., 2022. The angiosperm stem hemiparasitic genus Cassytha (Lauraceae) and its host interactions: A review. Front. Plant Sci. 13, 864110. [34] Zhang, J., Fu, X.-X., Li, R.-Q., et al., 2020b. The hornwort genome and early land plant evolution. Nat. Plants 6, 107-118. [35] Zhang, L., Chen, F., Zhang, X., et al., 2019. The water lily genome and the early evolution of flowering plants. Nature 577, 79-84. |