Beale, C.M., Lennon, J.J., Yearsley, J.M., et al., 2010. Regression analysis of spatial data. Ecol. Lett. 13, 246-264. Bininda-Emonds, O.R.P., Purvis, A. 2012. Comment on “impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification”. Science 337, 34. Budescu, D.V. 1993. Dominance analysis: a new approach to the problem of relative importance of predictors in multiple-regression. Psychol. Bull. 114, 542-551. Cammarota, C., Pinto, A. 2020. Variable selection and importance in presence of high collinearity: an application to the prediction of lean body mass from multi-frequency bioelectrical impedance. J. Appl. Stat. 48, 1644-1658. Carslaw, D.C., Ropkins, K. 2012. Openair - an R package for air quality data analysis. Environ. Model. Software 27-28, 52-61. Chevan, A., Sutherland, M. 1991. Hierarchical partitioning. Am. Statistician 45, 90-96. Damalas, D., Megalofonou, P., Apostolopoulou, M. 2007. Environmental, spatial, temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries. Fish. Res. 84, 233-246. De Boor, C. 1978. A Practical Guide to Splines. Springer, Switzerland. Dormann, C.F., Elith, J., Bacher, S., et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27-46. Feng, Y.J., Cui, L., Chen, X.J., et al., 2019. Impacts of changing spatial scales on CPUE-factor relationships of Ommastrephes bartramii in the northwest Pacific. Fish. Oceanogr. 28, 143-158. Gao, Z., Ivey, C.E., Blanchard, C.L., et al., 2023. Emissions and meteorological impacts on PM2.5 species concentrations in Southern California using generalized additive modeling. Sci. Total Environ. 891, 164464. Gilbert, N.A., Amaral, B.R., Smith, O.M., et al., 2024. A century of statistical Ecology. Ecology 105, e4283. Graham, M.H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809-2815. Healy, M.J.R. 1990. Measuring importance. Stat. Med. 9, 633-637. Johnson, J.W., LeBreton, J.M. 2004. History and use of relative importance indices in organizational research. Organ. Res. Methods, 7, 238-257. Kruskal, W., Majors, R. 1989. Concepts of relative importance in recent scientific literature. Am. Statistician 43, 2-6. Lai, J.S., Lortie, C.J. R. A. Muenchen, et al., 2019. Evaluating the popularity of R in ecology. Ecosphere 10, e02567. Lai, J.S., Zou, Y., Zhang, J.L., et al., 2022a. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782-788. Lai, J.S., Zou, Y., Zhang, S., et al., 2022b. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15, 1302-1307. Lai, J.S., Cui, D.F., Zhu, W.J., et al., 2023a. The use of R and R Packages in biodiversity conservation Research. Diversity 15, 1202. Lai, J.S., Zhu, W.J., Cui, D.F., et al., 2023b. Extension of the glmm.hp package to zero-inflated generalized linear mixed models and multiple regression. J. Plant Ecol. 16, rtad038. Li, T.Y., Wu, N.G., Chen, J.Y., et al., 2023. Vertical exchange and cross-regional transport of lower-tropospheric ozone over Hong Kong. Atmos. Res. 292,106877. Lindeman, R.H., Merenda, P.F., Gold, R.Z. 1980. Introduction to Bivariate and Multivariate Analysis. Scott Foresman, Glenview, IL. Liu, X., Feng, J., Wang, Y. 2019. Chlorophyll a predictability and relative importance of factors governing lake phytoplankton at different timescales. Sci. Total Environ. 648, 472-480. Liu, X.Y., Gao, H., Zhang, X.M., et al., 2023. Driving forces of meteorology and emission changes on surface ozone in the Huaihe River Basin, China. Water Air Soil Pollut. 234, 355. Ma, Y.X., Ma, B.J., Jiao, H.R., et al., 2020. An analysis of the effects of weather and air pollution on tropospheric ozone using a generalized additive model in Western China: Lanzhou, Gansu. Atmos. Environ. 224, 117342. Murray, K., Conner, M.M. 2009. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348-355. Pedersen, E.J., Miller, D.L., Simpson, G.L., et al., 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876. Peres-Neto, P.R., Legendre, P., Dray, S., et al., 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614-2625. R Development Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Ramsay, T.O., Burnett, R.T., Krewski, D. 2003. The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology 14, 18-23. Ravindra, K., Rattan, P., Mor, S., et al., 2019. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987. Ray-Mukherjee, J., Nimon, K., Mukherjee, S., et al., 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol. Evol. 5, 320-328. Singh, P.D., Klamerus-Iwan, A., Hawrylo, P., et al., 2024. Possibility of spatial estimation of soil erosion using Revised Universal Soil Loss Equation model and generalized additive model in post-hard coal mining spoil heap. Land Degrad. Dev. 35, 923-935. Sun, J.M., Lu, L., Liu, K.K., et al., 2018. Forecast of severe fever with thrombocytopenia syndrome incidence with meteorological factors. Sci. Total Environ. 626, 1188-1192. Wang, Y., Hao, J., McElroy, M.B., et al., 2009. Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions. Atmos. Chem. Phys. 9, 5237-5251. Wickham, H. 2016. Elegant Graphics for Data Analysis. Springer-Verlag, New York. Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. B Stat. Methodol. 73, 3-36. Wood, S.N. 2017. Generalized Additive Models: an Introduction with R, second ed. CRC Press, Boco Raton. Wood, S.N., Augustin, N.H. 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157-177. Wood, S.N., Pya, N., Saefken, B. 2016. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548-1563. Zuur, A., Ieno, E., Walker, N., et al., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York. Zuur, A.F., Ieno, E.N., Elphick, C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecol. Evol. 1, 3-14. |