%A WANG Dan-Dan, ZHENG Guo-Wei, LI Wei-Qi %T Plants Adapt to LongTerm Potassium Deficiency by Accumulation of Membrane Lipids in Leaves and Maintenance of Lipid Composition in Roots %0 Journal Article %D 2014 %J Plant Diversity %R 10.7677/ynzwyj201413099 %P 163-176 %V 36 %N 02 %U {https://journal.kib.ac.cn/CN/abstract/article_33300.shtml} %8 2014-03-25 %X

Environmental stresses on plants can be divided into short and longterm types, which may be associated with different adaptation strategies. Adjustment of the composition of membrane lipid is a major response to stress. The membrane lipid composition may different between short and longterm environment stresses. A previous study reported changes in the lipid composition in barley root under shortterm potassium (K+) deficiency; however, the equivalent response of plants to longterm K+ deficiency remains completely unknown. Plants of Arabidopsis thaliana and Crucihimalaya himalaica (Brassicaceae) were grown at four different K+ levels (51,051,0051 and 0mmol·L-1) for 18 days. Physiological and biochemical experiments were conducted on this issue and the results suggest that Chimalaica, a relative of Athaliana, derived from a K+deficient area, is tolerant to K+limited conditions. Electrospray ionization tandem mass spectrometry (ESIMS/MS) was used to determine the lipid changes in Athaliana and Chimalaica subjected to longterm K+ deficiency. The results showed that: (1) the levels of total lipids and most lipid classes in leaves of Athaliana and Chimalaica increased under K+deficient conditions; (2) the changes in lipid content in leaves of Athaliana and Chimalaica were greater than those in the roots; (3) the change in lipid content in leaves of Chimalaica was greater than that in Athaliana, with the opposite trend being shown in the roots and (4) in Athaliana, the increase in phosphatidic acid (PA) corresponded to the decrease in phosphatidylethanolamine (PE). This indicates that K+deficiencyinduced PA in Athaliana was derived primarily from PE. Our results suggest that, at the cellular level, plants adapt to longterm K+ deficiency by the accumulation of lipids in leaves and maintenance of the lipid composition in roots.